One place for hosting & domains

      How To Build a Customer List Management App with React and TypeScript


      The author selected the Tech Education Fund to receive a donation as part of the Write for DOnations program.

      Introduction

      TypeScript has brought a lot of improvement into how JavaScript developers structure and write code for apps, especially web applications. Defined as a superset of JavaScript, TypeScript behaves identically to JavaScript but with extra features designed to help developers build larger and more complex programs with fewer or no bugs. TypeScript is increasingly gaining popularity; adopted by major companies like Google for the Angular web framework. The Nest.js back-end framework was also built with TypeScript.

      One of the ways to improve productivity as a developer is the ability to implement new features as quickly as possible without any concern over breaking the existing app in production. To achieve this, writing statically typed code is a style adopted by many seasoned developers. Statically typed programming languages like TypeScript enforce an association for every variable with a data type; such as a string, integer, boolean, and so on. One of the major benefits of using a statically typed programming language is that type checking is completed at compile time, therefore developers can see errors in their code at a very early stage.

      React is an open-source JavaScript library, which developers use to create high-end user interfaces for scalable web applications. The great performance and dynamic user interfaces built with React for single-page applications make it a popular choice among developers.

      In this tutorial, you will create a customer list management application with a separate REST API backend and a frontend built with React and TypeScript. You will build the backend using a fake REST API named json-server. You’ll use it to quickly set up a CRUD (Create, Read, Update, and Delete) backend. Consequently you can focus on handling the front-end logic of an application using React and TypeScript.

      Prerequisites

      To complete this tutorial, you will need:

      Step 1 — Installing TypeScript and Creating the React Application

      In this step, you will install the TypeScript package globally on your machine by using the Node Package Manager (npm). After that, you will also install React and its dependencies, and check that your React app is working by running the development server.

      To begin, open a terminal and run the following command to install TypeScript:

      • npm install -g typescript

      Once the installation process is complete, execute the following command to check your installation of TypeScript:

      You will see the current version installed on your machine:

      Output

      Version 3.4.5

      Next, you will install the React application by using the create-react-app tool to set up the application with a single command. You'll use the npx command, which is a package runner tool that comes with npm 5.2+. The create-react-app tool has built-in support for working with TypeScript without any extra configuration required. Run the following command to create and install a new React application named typescript-react-app:

      • npx create-react-app typescript-react-app --typescript

      The preceding command will create a new React application with the name typescript-react-app. The --typescript flag will set the default filetype for React components to .tsx.

      Before you complete this section, the application will require moving from one port to another. To do that, you will need to install a routing library for your React application named React Router and its corresponding TypeScript definitions. You will use yarn to install the library and other packages for this project. This is because yarn is faster, especially for installing dependencies for a React application. Move into the newly created project folder and then install React Router with the following command:

      • cd typescript-react-app
      • yarn add react-router-dom

      You now have the React Router package, which will provide the routing functionality within your project. Next, run the following command to install the TypeScript definitions for React Router:

      • yarn add @types/react-router-dom

      Now you'll install axios, which is a promised-based HTTP client for browsers, to help with the process of performing HTTP requests from the different components that you will create within the application:

      Once the installation process is complete, start the development server with:

      Your application will be running on http://localhost:3000.

      React application homepage

      You have successfully installed TypeScript, created a new React application, and installed React Router in order to help with navigating from one page of the application to another. In the next section, you will set up the back-end server for the application.

      Step 2 — Creating a JSON Server

      In this step, you'll create a mock server that your React application can quickly connect with, as well as use its resources. It is important to note that this back-end service is not suitable for an application in production. You can use Nest.js, Express, or any other back-end technology to build a RESTful API in production. json-server is a useful tool whenever you need to create a prototype and mock a back-end server.

      You can use either npm or yarn to install json-server on your machine. This will make it available from any directory of your project whenever you might need to make use of it. Open a new terminal window and run this command to install json-server while you are still within the project directory:

      • yarn global add json-server

      Next, you will create a JSON file that will contain the data that will be exposed by the REST API. For the objects specified in this file (which you'll create), a CRUD endpoint will be generated automatically. To begin, create a new folder named server and then move into it:

      Now, use nano to create and open a new file named db.json:

      Add the following content to the file:

      /server/db.json

      {
          "customers": [
              {
                  "id": 1,
                  "first_name": "Customer_1",
                  "last_name": "Customer_11",
                  "email": "customer1@mail.com",
                  "phone": "00000000000",
                  "address": "Customer_1 Address",
                  "description": "Customer_1 description"
              },
              {
                  "id": 2,
                  "first_name": "Customer_2",
                  "last_name": "Customer_2",
                  "email": "customer2@mail.com",
                  "phone": "00000000000",
                  "address": "Customer_2 Adress",
                  "description": "Customer_2 Description"
              }
          ]
      }
      

      The JSON structure consists of a customer object, which has two datasets assigned. Each customer consists of seven properties: id, description, first_name, last_name, email, phone, and address.

      Save and exit the file.

      By default, the json-server runs on port 3000—this is the same port on which your React application runs. To avoid conflict, you can change the default port for the json-server. To do that, move to the root directory of the application:

      • cd ~/typescript-react-app

      Open the application with your preferred text editor and create a new file named json-server.json:

      Now insert the following to update the port number:

      /json-server.json

      {
          "port": 5000
      }
      

      This will act as the configuration file for the json-server and it will ensure that the server runs on the port specified in it at all times.

      Save and exit the file.

      To run the server, use the following command:

      • json-server --watch server/db.json

      This will start the json-server on port 5000. If you navigate to http://localhost:5000/customers in your browser, you will see the server showing your customer list.

      Customer list shown by json-server

      To streamline the process of running the json-server, you can update package.json with a new property named server to the scripts object as shown here:

      /package.json

      {
      ...
        "scripts": {
          "start": "react-scripts start",
          "build": "react-scripts build",
          "test": "react-scripts test",
          "eject": "react-scripts eject",
          "server": "json-server --watch server/db.json"
        },
      ...
      }
      

      Save and exit the file.

      Now anytime you wish to start the json-server, all you have to do is run yarn server from the terminal.

      You've created a simple REST API that you will use as the back-end server for this application. You also created a customer JSON object that will be used as the default data for the REST API. Lastly, you configured an alternative port for the back-end server powered by json-server. Next, you will build reusable components for your application.

      Step 3 — Creating Reusable Components

      In this section, you will create the required React components for the application. This will include components to create, display, and edit the details of a particular customer in the database respectively. You'll also build some of the TypeScript interfaces for your application.

      To begin, move back to the terminal where you have the React application running and stop the development server with CTRL + C. Next, navigate to the ./src/ folder:

      Then, create a new folder named components inside of it and move into the new folder:

      • mkdir components
      • cd components

      Within the newly created folder, create a customer folder and then move into it:

      • mkdir customer
      • cd customer

      Now create two new files named Create.tsx and Edit.tsx:

      • touch Create.tsx Edit.tsx

      These files are React reusable components that will render the forms and hold all the business logic for creating and editing the details of a customer respectively.

      Open the Create.tsx file in your text editor and add the following code:

      /src/components/customer/Create.tsx

      import * as React from 'react';
      import axios from 'axios';
      import { RouteComponentProps, withRouter } from 'react-router-dom';
      
      export interface IValues {
          first_name: string,
          last_name: string,
          email: string,
          phone: string,
          address: string,
          description: string,
      }
      export interface IFormState {
          [key: string]: any;
          values: IValues[];
          submitSuccess: boolean;
          loading: boolean;
      }
      
      

      Here you've imported React, axios, and other required components necessary for routing from the React Router package. After that you created two new interfaces named IValues and IFormState. TypeScript interfaces help to define the specific type of values that should be passed to an object and enforce consistency throughout an application. This ensures that bugs are less likely to appear in your program.

      Next, you will build a Create component that extends React.Component. Add the following code to the Create.tsx file immediately after the IFormState interface:

      /src/components/customer/Create.tsx

      ...
      class Create extends React.Component<RouteComponentProps, IFormState> {
          constructor(props: RouteComponentProps) {
              super(props);
              this.state = {
                  first_name: '',
                  last_name: '',
                  email: '',
                  phone: '',
                  address: '',
                  description: '',
                  values: [],
                  loading: false,
                  submitSuccess: false,
              }
          }
      }
      export default withRouter(Create)
      

      Here you've defined a React component in Typescript. In this case, the Create class component accepts props (short for “properties”) of type RouteComponentProps and uses a state of type IFormState. Then, inside the constructor, you initialized the state object and defined all the variables that will represent the rendered values for a customer.

      Next, add these methods within the Create class component, just after the constructor. You'll use these methods to process customer forms and handle all changes in the input fields:

      /src/components/customer/Create.tsx

      ...
                values: [],
                loading: false,
                submitSuccess: false,
            }
        }
      
        private processFormSubmission = (e: React.FormEvent<HTMLFormElement>): void => {
                e.preventDefault();
                this.setState({ loading: true });
                const formData = {
                    first_name: this.state.first_name,
                    last_name: this.state.last_name,
                    email: this.state.email,
                    phone: this.state.phone,
                    address: this.state.address,
                    description: this.state.description,
                }
                this.setState({ submitSuccess: true, values: [...this.state.values, formData], loading: false });
                axios.post(`http://localhost:5000/customers`, formData).then(data => [
                    setTimeout(() => {
                        this.props.history.push('/');
                    }, 1500)
                ]);
            }
      
            private handleInputChanges = (e: React.FormEvent<HTMLInputElement>) => {
                e.preventDefault();
                this.setState({
                    [e.currentTarget.name]: e.currentTarget.value,
            })
        }
      
      ...
      export default withRouter(Create)
      ...
      

      The processFormSubmission() method receives the details of the customer from the application state and posts it to the database using axios. The handleInputChanges() uses React.FormEvent to obtain the values of all input fields and calls this.setState() to update the state of the application.

      Next, add the render() method within the Create class component immediately after the handleInputchanges() method. This render() method will display the form to create a new customer in the application:

      /src/components/customer/Create.tsx

      ...
        public render() {
            const { submitSuccess, loading } = this.state;
            return (
                <div>
                    <div className={"col-md-12 form-wrapper"}>
                        <h2> Create Post </h2>
                        {!submitSuccess && (
                            <div className="alert alert-info" role="alert">
                                Fill the form below to create a new post
                        </div>
                        )}
                        {submitSuccess && (
                            <div className="alert alert-info" role="alert">
                                The form was successfully submitted!
                                </div>
                        )}
                        <form id={"create-post-form"} onSubmit={this.processFormSubmission} noValidate={true}>
                            <div className="form-group col-md-12">
                                <label htmlFor="first_name"> First Name </label>
                                <input type="text" id="first_name" onChange={(e) => this.handleInputChanges(e)} name="first_name" className="form-control" placeholder="Enter customer's first name" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="last_name"> Last Name </label>
                                <input type="text" id="last_name" onChange={(e) => this.handleInputChanges(e)} name="last_name" className="form-control" placeholder="Enter customer's last name" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="email"> Email </label>
                                <input type="email" id="email" onChange={(e) => this.handleInputChanges(e)} name="email" className="form-control" placeholder="Enter customer's email address" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="phone"> Phone </label>
                                <input type="text" id="phone" onChange={(e) => this.handleInputChanges(e)} name="phone" className="form-control" placeholder="Enter customer's phone number" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="address"> Address </label>
                                <input type="text" id="address" onChange={(e) => this.handleInputChanges(e)} name="address" className="form-control" placeholder="Enter customer's address" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="description"> Description </label>
                                <input type="text" id="description" onChange={(e) => this.handleInputChanges(e)} name="description" className="form-control" placeholder="Enter Description" />
                            </div>
                            <div className="form-group col-md-4 pull-right">
                                <button className="btn btn-success" type="submit">
                                    Create Customer
                                </button>
                                {loading &&
                                    <span className="fa fa-circle-o-notch fa-spin" />
                                }
                            </div>
                        </form>
                    </div>
                </div>
            )
        }
      ...
      

      Here, you created a form with the input fields to hold the values of the first_name, last_name, email, phone, address, and description of a customer. Each of the input fields have a method handleInputChanges() that runs on every keystroke, updating the React state with the value it obtains from the input field. Furthermore, depending on the state of the application, a boolean variable named submitSuccess will control the message that the application will display before and after creating a new customer.

      You can see the complete code for this file in this GitHub repository.

      Save and exit Create.tsx.

      Now that you have added the appropriate logic to the Create component file for the application, you'll proceed to add contents for the Edit component file.

      Open your Edit.tsx file within the customer folder, and start by adding the following content to import React, axios, and also define TypeScript interfaces:

      /src/components/customer/Edit.tsx

      import * as React from 'react';
      import { RouteComponentProps, withRouter } from 'react-router-dom';
      import axios from 'axios';
      
      export interface IValues {
          [key: string]: any;
      }
      export interface IFormState {
          id: number,
          customer: any;
          values: IValues[];
          submitSuccess: boolean;
          loading: boolean;
      }
      

      Similarly to the Create component, you import the required modules and create IValues and IFormState interfaces respectively. The IValues interface defines the data type for the input fields' values, while you'll use IFormState to declare the expected type for the state object of the application.

      Next, create the EditCustomer class component directly after the IFormState interface block as shown here:

      /src/components/customer/Edit.tsx

      ...
      class EditCustomer extends React.Component<RouteComponentProps<any>, IFormState> {
          constructor(props: RouteComponentProps) {
              super(props);
              this.state = {
                  id: this.props.match.params.id,
                  customer: {},
                  values: [],
                  loading: false,
                  submitSuccess: false,
              }
          }
      }
      export default withRouter(EditCustomer)
      

      This component takes the RouteComponentProps<any> and an interface of IFormState as a parameter. You use the addition of <any> to the RouteComponentProps because whenever React Router parses path parameters, it doesn’t do any type conversion to ascertain whether the type of the data is number or string. Since you're expecting a parameter for uniqueId of a customer, it is safer to use any.

      Now add the following methods within the component:

      /src/components/customer/Edit.tsx

      ...
          public componentDidMount(): void {
              axios.get(`http://localhost:5000/customers/${this.state.id}`).then(data => {
                  this.setState({ customer: data.data });
              })
          }
      
          private processFormSubmission = async (e: React.FormEvent<HTMLFormElement>): Promise<void> => {
              e.preventDefault();
              this.setState({ loading: true });
              axios.patch(`http://localhost:5000/customers/${this.state.id}`, this.state.values).then(data => {
                  this.setState({ submitSuccess: true, loading: false })
                  setTimeout(() => {
                      this.props.history.push('/');
                  }, 1500)
              })
          }
      
          private setValues = (values: IValues) => {
              this.setState({ values: { ...this.state.values, ...values } });
          }
          private handleInputChanges = (e: React.FormEvent<HTMLInputElement>) => {
              e.preventDefault();
              this.setValues({ [e.currentTarget.id]: e.currentTarget.value })
          }
      ...
      }
      
      export default withRouter(EditCustomer)
      

      First, you add a componentDidMount() method, which is a lifecycle method that is being called when the component is created. The method takes the id obtained from the route parameter to identify a particular customer as a parameter, uses it to retrieve their details from the database and then populates the form with it. Furthermore, you add methods to process form submission and handle changes made to the values of the input fields.

      Lastly, add the render() method for the Edit component:

      /src/components/customer/Edit.tsx

      ...
          public render() {
              const { submitSuccess, loading } = this.state;
              return (
                  <div className="App">
                      {this.state.customer &&
                          <div>
                              < h1 > Customer List Management App</h1>
                              <p> Built with React.js and TypeScript </p>
      
                              <div>
                                  <div className={"col-md-12 form-wrapper"}>
                                      <h2> Edit Customer </h2>
                                      {submitSuccess && (
                                          <div className="alert alert-info" role="alert">
                                              Customer's details has been edited successfully </div>
                                      )}
                                      <form id={"create-post-form"} onSubmit={this.processFormSubmission} noValidate={true}>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="first_name"> First Name </label>
                                              <input type="text" id="first_name" defaultValue={this.state.customer.first_name} onChange={(e) => this.handleInputChanges(e)} name="first_name" className="form-control" placeholder="Enter customer's first name" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="last_name"> Last Name </label>
                                              <input type="text" id="last_name" defaultValue={this.state.customer.last_name} onChange={(e) => this.handleInputChanges(e)} name="last_name" className="form-control" placeholder="Enter customer's last name" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="email"> Email </label>
                                              <input type="email" id="email" defaultValue={this.state.customer.email} onChange={(e) => this.handleInputChanges(e)} name="email" className="form-control" placeholder="Enter customer's email address" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="phone"> Phone </label>
                                              <input type="text" id="phone" defaultValue={this.state.customer.phone} onChange={(e) => this.handleInputChanges(e)} name="phone" className="form-control" placeholder="Enter customer's phone number" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="address"> Address </label>
                                              <input type="text" id="address" defaultValue={this.state.customer.address} onChange={(e) => this.handleInputChanges(e)} name="address" className="form-control" placeholder="Enter customer's address" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="description"> Description </label>
                                              <input type="text" id="description" defaultValue={this.state.customer.description} onChange={(e) => this.handleInputChanges(e)} name="description" className="form-control" placeholder="Enter Description" />
                                          </div>
                                          <div className="form-group col-md-4 pull-right">
                                              <button className="btn btn-success" type="submit">
                                                  Edit Customer </button>
                                              {loading &&
                                                  <span className="fa fa-circle-o-notch fa-spin" />
                                              }
                                          </div>
                                      </form>
                                  </div>
                              </div>
                          </div>
                      }
                  </div>
              )
          }
      ...    
      

      Here, you created a form to edit the details of a particular customer, and then populated the input fields within that form with the customer's details that your application's state obtained. Similarly to the Create component, changes made to all the input fields will be handled by the handleInputChanges() method.

      You can see the complete code for this file in this GitHub repository.

      Save and exit Edit.tsx.

      To view the complete list of customers created within the application, you’ll create a new component within the ./src/components folder and name it Home.tsx:

      • cd ./src/components
      • nano Home.tsx

      Add the following content:

      /src/components/Home.tsx

      import * as React from 'react';
      import { Link, RouteComponentProps } from 'react-router-dom';
      import axios from 'axios';
      
      interface IState {
          customers: any[];
      }
      
      export default class Home extends React.Component<RouteComponentProps, IState> {
          constructor(props: RouteComponentProps) {
              super(props);
              this.state = { customers: [] }
          }
          public componentDidMount(): void {
              axios.get(`http://localhost:5000/customers`).then(data => {
                  this.setState({ customers: data.data })
              })
          }
          public deleteCustomer(id: number) {
              axios.delete(`http://localhost:5000/customers/${id}`).then(data => {
                  const index = this.state.customers.findIndex(customer => customer.id === id);
                  this.state.customers.splice(index, 1);
                  this.props.history.push('/');
              })
          }
      }
      

      Here, you've imported React, axios, and other required components from React Router. You created two new methods within the Home component:

      • componentDidMount(): The application invokes this method immediately after a component is mounted. Its responsibility here is to retrieve the list of customers and update the home page with it.
      • deleteCustomer(): This method will accept an id as a parameter and will delete the details of the customer identified with that id from the database.

      Now add the render() method to display the table that holds the list of customers for the Home component:

      /src/components/Home.tsx

      ...
      public render() {
              const customers = this.state.customers;
              return (
                  <div>
                      {customers.length === 0 && (
                          <div className="text-center">
                              <h2>No customer found at the moment</h2>
                          </div>
                      )}
                      <div className="container">
                          <div className="row">
                              <table className="table table-bordered">
                                  <thead className="thead-light">
                                      <tr>
                                          <th scope="col">Firstname</th>
                                          <th scope="col">Lastname</th>
                                          <th scope="col">Email</th>
                                          <th scope="col">Phone</th>
                                          <th scope="col">Address</th>
                                          <th scope="col">Description</th>
                                          <th scope="col">Actions</th>
                                      </tr>
                                  </thead>
                                  <tbody>
                                      {customers && customers.map(customer =>
                                          <tr key={customer.id}>
                                              <td>{customer.first_name}</td>
                                              <td>{customer.last_name}</td>
                                              <td>{customer.email}</td>
                                              <td>{customer.phone}</td>
                                              <td>{customer.address}</td>
                                              <td>{customer.description}</td>
                                              <td>
                                                  <div className="d-flex justify-content-between align-items-center">
                                                      <div className="btn-group" style={{ marginBottom: "20px" }}>
                                                          <Link to={`edit/${customer.id}`} className="btn btn-sm btn-outline-secondary">Edit Customer </Link>
                                                          <button className="btn btn-sm btn-outline-secondary" onClick={() => this.deleteCustomer(customer.id)}>Delete Customer</button>
                                                      </div>
                                                  </div>
                                              </td>
                                          </tr>
                                      )}
                                  </tbody>
                              </table>
                          </div>
                      </div>
                  </div>
              )
          }
      ...
      

      In this code block, you retrieve the lists of customers from the application's state as an array, iterate over it, and display it within an HTML table. You also add the customer.id parameter, which the method uses to identify and delete the details of a particular customer from the list.

      Save and exit Home.tsx.

      You've adopted a statically typed principle for all the components created with this application by defining types for the components and props through the use of interfaces. This is one of the best approaches to using TypeScript for a React application.

      With this, you've finished creating all the required reusable components for the application. You can now update the app component with links to all the components that you have created so far.

      Step 4 — Setting Up Routing and Updating the Entry Point of the Application

      In this step, you will import the necessary components from the React Router package and configure the App component to render different components depending on the route that is loaded. This will allow you to navigate through different pages of the application. Once a user visits a route, for example /create, React Router will use the path specified to render the contents and logic within the appropriate component defined to handle such route.

      Navigate to ./src/App.tsx:

      Then replace its content with the following:

      /src/App.tsx

      import * as React from 'react';
      import './App.css';
      import { Switch, Route, withRouter, RouteComponentProps, Link } from 'react-router-dom';
      import Home from './components/Home';
      import Create from './components/customer/Create';
      import EditCustomer from './components/customer/Edit';
      
      class App extends React.Component<RouteComponentProps<any>> {
        public render() {
          return (
            <div>
              <nav>
                <ul>
                  <li>
                    <Link to={'/'}> Home </Link>
                  </li>
                  <li>
                    <Link to={'/create'}> Create Customer </Link>
                  </li>
                </ul>
              </nav>
              <Switch>
                <Route path={'/'} exact component={Home} />
                <Route path={'/create'} exact component={Create} />
                <Route path={'/edit/:id'} exact component={EditCustomer} />
              </Switch>
            </div>
          );
        }
      }
      export default withRouter(App);
      

      You imported all the necessary components from the React Router package and you also imported the reusable components for creating, editing, and viewing customers' details.

      Save and exit App.tsx.

      The ./src/index.tsx file is the entry point for this application and renders the application. Open this file and import React Router into it, then wrap the App component inside a BrowserRouter:

      /src/index.tsx

      import React from 'react';
      import ReactDOM from 'react-dom';
      import './index.css';
      import App from './App';
      import { BrowserRouter } from 'react-router-dom'; 
      import * as serviceWorker from './serviceWorker';
      ReactDOM.render(
          <BrowserRouter>
              <App />
          </BrowserRouter>
          , document.getElementById('root')
      );
      serviceWorker.unregister();
      

      React Router uses the BrowserRouter component to make your application aware of the navigation, such as history and current path.

      Once you've finished editing Index.tsx, save and exit.

      Lastly, you will use Bootstrap to add some style to your application. Bootstrap is a popular HTML, CSS, and JavaScript framework for developing responsive, mobile-first projects on the web. It allows developers to build an appealing user interface without having to write too much CSS. It comes with a responsive grid system that gives a web page a finished look that works on all devices.

      To include Bootstrap and styling for your application, replace the contents of ./src/App.css with the following:

      /src/App.css

      @import 'https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css';
      
      .form-wrapper {
        width: 500px;
        margin: 0 auto;
      }
      .App {
        text-align: center;
        margin-top: 30px;
      }
      nav {
        width: 300px;
        margin: 0 auto;
        background: #282c34;
        height: 70px;
        line-height: 70px;
      }
      nav ul li {
        display: inline;
        list-style-type: none;
        text-align: center;
        padding: 30px;
      }
      nav ul li a {
        margin: 50px 0;
        font-weight: bold;
        color: white;
        text-decoration: none;
      }
      nav ul li a:hover {
        color: white;
        text-decoration: none;
      }
      table {
        margin-top: 50px;
      }
      .App-link {
        color: #61dafb;
      }
      @keyframes App-logo-spin {
        from {
          transform: rotate(0deg);
        }
        to {
          transform: rotate(360deg);
        }
      }
      

      You have used Bootstrap here to enhance the look and feel of the application by giving it a default layout, styles, and color. You have also added some custom styles, particularly to the navigation bar.

      Save and exit App.css.

      In this section, you have configured React Router to render the appropriate component depending on the route visited by the user and also added some styling to make the application more attractive to users. Next, you will test all the functionality implemented for the application.

      Step 5 — Running Your Application

      Now that you have set up the frontend of this application with React and TypeScript by creating several reusable components, and also built a REST API with the json-server, you can run your app.

      Navigate back to the project’s root folder:

      • cd ~/typescript-react-app

      Next run the following command to start your app:

      Note: Make sure your server is still running in the other terminal window. Otherwise, start it with: yarn server.

      Navigate to http://localhost:3000 to view the application from your browser. Then proceed to click on the Create button and fill in the details of a customer.

      Create customer page

      After entering the appropriate values in the input fields, click on the Create Customer button to submit the form. The application will redirect you back to your homepage once you're done creating a new customer.

      View customers page

      Click the Edit Customer button for any of the rows and you will be directed to the page that hosts the editing functionality for the corresponding customer on that row.

      Edit customer page

      Edit the details of the customer and then click on Edit Customer to update the customer’s details.

      You've run your application to ensure all the components are working. Using the different pages of your application, you've created and edited a customer entry.

      Conclusion

      In this tutorial you built a customer list management app with React and TypeScript. The process in this tutorial is a deviation from using JavaScript as the conventional way of structuring and building applications with React. You've leveraged the benefits of using TypeScript to complete this front-end focused tutorial.

      To continue to develop this project, you can move your mock back-end server to a production-ready back-end technology like Express or Nest.js. Furthermore, you can extend what you have built in this tutorial by adding more features such as authentication and authorization with different tools like the Passport.js authentication library.

      You can find the complete source code for the project on GitHub.



      Source link

      3 Solutions for Converting Your WordPress Site into a Mobile App


      Nowadays, a lot of people interact with the web mostly by using mobile devices. That means it’s more important than ever to provide a quality mobile experience. Otherwise, you risk alienating a large part of your potential user base.

      There are many ways you can improve the overall experience for your mobile users. For example, you can design a responsive website so that it looks (and works) perfectly on smaller devices. You can also go a step further and convert it into a fully-working app.

      In this article, we’ll talk about why converting your website into a WordPress mobile app can be an excellent idea for some site owners. Then we’ll discuss several tools and techniques that will enable you to do so, and discuss how to pick the right one for your needs. Let’s talk apps!

      Why Your WordPress Company Site May Need a Mobile App

      When it comes to user experience, responsive design is king. We’ve previously covered why you should create a mobile-friendly site (and how to do it), but you can also create a mobile app version of your site. Let’s go over some of the reasons you might want to use this approach:

      • Apps provide a more native experience for mobile devices.
      • You can use notifications to stay in touch with your user base.
      • If you use subscriptions, they can be managed via mobile payment systems.

      That said, an app is not a replacement for a mobile-friendly website, and vice-versa. Ideally, you’ll have both, which will enable you to maximize your potential audience. After all, some people don’t want to install any additional apps on their phones, whereas others vastly prefer the experience an app provides over that of a mobile website.

      It’s important to understand, however, that creating a mobile app isn’t particularly easy. Depending on what features you want to include, you may need a background in development, or you’ll have to hire someone to help you get the project off the ground. That process, as you might imagine, can get expensive.

      The good news is that if you’re using WordPress, you get access to multiple tools you can use to create a mobile app version of your website. There is a range of options that vary in price and ease of use, so you can pick the approach that’s best suited to your needs.

      3 Solutions for Converting Your Company WordPress Site into a Mobile App

      While there are many ways to create WordPress mobile apps, the following methods are three of the most common and accessible choices. Let’s look at each, in turn, to help you decide which ones you should consider. We’ll start with the simplest solution.

      1. Use a WordPress Plugin to Generate Your App

      As a WordPress user, you’re probably familiar with using plugins to implement cool features and functionality to your website. However, what you may not know is that you can use plugins to create a fully-working WordPress mobile app.

      There are a few tools that can accomplish this, but let’s focus on one of the most popular: AppPresser.

      AppPresser plugin.

      First, it’s important to note that the AppPresser plugin by itself doesn’t enable you to generate a mobile app. You’ll also need to sign up for a paid AppPresser account, which will be linked to your WordPress website through the plugin.

      Once you have both pieces in place, you can customize your mobile app from within the AppPresser platform and generate installable files for both Android and iOS when you’re done.

      AppPresser app creation and customization process.

      The app creation process is simple – you get to use a builder that feels just like the WordPress Customizer. However, as you might imagine, there are limitations to using a tool like this. Since you’re not building an app from scratch, you get a small set of features to play with. If you’re looking to create an app with very specific functionality, using a plugin probably isn’t the right approach for you.

      Ultimately, using a plugin to generate a mobile app for your WordPress site makes the most sense for projects that don’t require a lot of advanced functionality. For example, AppPresser would be a great choice for blog and news apps. It also handles e-commerce reasonably well, which makes it a useful option for those running a store on a WooCommerce website.

      The AppPresser plugin itself is free, but as we mentioned, you’ll need to sign up for an account on the platform. A basic AppPresser account, which supports one app (for both iOS and Android) will cost you $228 per year.

      Be Awesome on the Internet

      Join our monthly newsletter for tips and tricks to build your dream website!

      2. Opt for a Solution Designed for Companies and Professional Projects

      Of course, if you’re working on a company site, your needs are different than those who are creating mobile apps for blogs or online stores. Choosing a tool explicitly designed with companies in mind can help you create an app with features that are well-suited to your needs.

      Consider Appful, for example.

      Appful content app.

      This solution can convert your website and social media posts into a powerful content app for connecting with customers and employees. Features such as white labeling, full-service maintenance, and scalability make it highly suitable for growing companies. In fact, it powers apps for several well-known organizations, including Greenpeace, PETA, and even the United Nations.

      Appful works similarly to AppPresser, in that you’ll connect to the platform using a dedicated WordPress plugin. Then, you get access to a set of tools you can use to design a mobile app version of your site and customize its functionality. Only in this case, you’ll receive an assortment of useful templates that enable you to create a Minimum Viable Product (MVP) faster.

      Preview of the mobile app version of a website.

      On top of that, Appful also includes several other handy features, including support for offline reading, integration with Google Analytics and Apple watches, and more. Plus, the developers can also help you design a more customized app if you need specialized features, which makes this a solid middle ground between using a plugin and working with an agency (which we’ll talk about next).

      Overall, this approach offers a more user-friendly experience than most other tools. Creating a WordPress mobile app using Appful is a mostly painless process, and the service will even take care of publishing your app to the Android and iOS stores for you. Plus, you don’t need to pay to use the service until that point, which means there’s no pressure. Prices vary depending on the scope of your app and are available by request.

      3. Work With an Agency to Develop Your WordPress App

      Naturally, a third option is to hire someone to get the job done for you. When it comes to WordPress mobile apps, you’ll find no shortage of freelancers and agencies willing to take on the project — no matter the scope. This can save you a lot of time.

      Of course, hiring professional and talented developers is seldom cheap. Developing even a simple app can easily cost you thousands of dollars. The upside is that you’re not limited by what an app builder can do. If you work with an agency that knows what it’s doing, it should be able to advise you on what’s possible and what isn’t, and help you bring your vision to life.

      Considering the costs associated with this approach, we can only recommend it if you have a very large budget, and you need an app version of your WordPress website that includes functionality you can’t add using DIY tools. For simpler projects, hiring an entire agency or even a couple of freelancers might not be particularly cost-effective. If you do decide to hire out, there are plenty of places to find WordPress developers and agencies.

      Professional Website Design Made Easy

      Make your site stand out with a professional design from our partners at RipeConcepts. Packages start at $299.

      Mobility Matters

      A lot of your website’s visitors will be using mobile devices. To provide them with the best possible experience, you can create a streamlined, app-based version of your WordPress website. Depending on what tool you use, you should be able to include all the same functionality your website offers, while creating an experience that feels much more native to mobile browsers.

      Do you have any questions about how to get your WordPress mobile application off the ground? Join the DreamHost Community and let us know!



      Source link

      Tutorial: How to Use Synology’s Hyper Backup App to Sync with DreamObjects


      If you’ve got a NAS (network attached storage) device at home, you know how great they are.

      These mini-computers full of hard drives live on your home network, ready and waiting to store and share all of your music, photos, and other media. You can grant access to yourself, your friends, your family, or everyone on the planet using any number of different apps!

      While NAS devices themselves are extremely fault-tolerant, that doesn’t mean that they could survive . . . a flood. Or a fire. A Godzilla foot would definitely destroy all your data.

      That’s why you should back up your NAS regularly. Synology has made this easy by providing powerful backup tools in their line of NAS devices.

      Today we’ll look at setting up Synology’s Hyper Backup app, and we’ll be using it to back up the contents of our Synology device to DreamHost’s DreamObjects cloud storage service.

      You’ll first need to create a private “bucket” on DreamObjects this where your data will live. Doing this is quick and easy, and at the end of the process, you’ll have three things: a public key, a secret key, and a bucket name.

      Secure Cloud Storage Hosting

      DreamObjects is an inexpensive object storage service great for hosting files, storing backups, and Web app development.

      The process to create a bucket on the DreamObjects control panel is pretty straightforward, but if you need a little hand-holding, our knowledge base has got you covered: DreamHost Knowledge Base: What is DreamObjects?

      Once you’ve got your bucket created, log in to your Synology device’s web interface, also known as DSM.

      Click over to the Package Center, navigate to the “Hyper Backup” app, and click to Install/Open it.

      Synology Hyper Backup

      If you’ve just installed Hyper Backup, navigate to your list of installed apps where you’ll see that it now sits proudly under a spotlight, awaiting your click.

      Hyper Backup App Icon

      Launch Hyper Backup.

      The first thing you’ll be asked is which where you’d like your backups to live. Navigate to “S3 Storage.”

      S3 Storage

      Why S3? Simple! DreamObjects is compatible with S3’s API, meaning that just about any app written for AWS S3 will work flawlessly with DreamObjects.

      Backup Destination Settings

      Select “Custom Server URL” for your S3 Server. Your server address should be “objects-us-east1.dream.io” and your signature version can be v4. Once you provide your access key (public key) and secret key, all of your available DreamObjects buckets will populate the dropdown list. Select the one that you want to use (you might only have one.) The “Directory” will be a directory that lives at the top level of your bucket, and you can name it whatever you like.

      Now you’ll need to tell Hyper Backup which directories to include in this backup task.

      Selecting directories to backup

      If you want to back up the settings and data from any of Synology’s own applications, you can do that as well on the next screen.

      Selecting apps to backup

      You’ll now need to give this backup task a name so that you’ll be able to quickly identify it in the future. You’ll also need to choose how often you’d like the backup to run.

      Configure your backup

      Finally, you’ll need to determine your rotation settings. This is important. If you allow your backups to run every week, for example, you’ll end up with 52 backups by the end of the year, and you’ll end up paying for all 52 of them. That’s probably not what you want.

      What you select on this screen is up to you, but here’s the official word from Synology on how their Rotation Settings work.

      Rotation Settings

      If all goes as planned, you should now see a screen like this:

      Backups have begun

      Whatever data you’ve selected from your NAS is now being backed up to DreamObjects! You can now kick back and never worry about having to retrieve it until you have to!

      If all goes well, you’ll see this:

      Great success!

      If you ever have a need to restore your data, just launch Hyper Backup and click this little fella to get started:

      Restore Data

      Alternately, you can use Synology’s standalone utility, Hyper Backup Explorer to retrieve individual files buried within your backups as well.

      Backups automated with tools like Hyper Backup and DreamObjects can be key to ensuring the security of your data in a world full of ransomware, random hardware failures, and natural disasters. Be prepared!



      Source link