One place for hosting & domains

      Bare Metal Cloud: Key Advantages and Critical Use Cases to Gain a Competitive Edge


      Cloud environments today are part of the IT infrastructure of most enterprises due to all the benefits they provide, including flexibility, scalability, ease of use and pay-as-you-go consumption and billing.

      But not all cloud infrastructure is the same.

      In this multicloud world, finding the right fit between a workload and a cloud provider becomes a new challenge. Application components, such as web-based content serving platforms, real-time analytics engines, machine learning clusters and Real-Time Bidding (RTB) engines integrating dozens of partners, all require different features and may call for different providers. Enterprises are looking at application components and IT initiatives on a project by project basis, seeking the right provider for each use case. Easy cloud-to-cloud interconnectivity allows scalable applications to be distributed over infrastructure from multiple providers.

      Bare Metal cloud is a deployment model that provides unique and valuable advantages, especially compared to the popular virtualized/VM cloud models that are common with hyperscale providers. Let’s explore the benefits of the bare metal cloud model and highlight some use cases where it offers a distinctive edge.

      Advantages of the Bare Metal Cloud Model

      Both bare metal cloud and the VM-based hyperscale cloud model provide flexibility and scalability. They both allow for DevOps driven provisioning and the infrastructure-as-code approach. They both help with demand-based capacity management and a pay-as-you-go budget allocation.

      But bare metal cloud has unique advantages:

      Customizability
      Whether you need NVMe storage for high IOPS, a specific GPU model, or a unique RAM-to-CPU ratio or RAID level, bare metal is highly customizable. Your physical server can be built to the unique specifications required by your application.

      Dedicated Resources
      Bare Metal cloud enables high-performance computing, as no virtualization is used and there is no hypervisor overhead. All the compute cycles and resources are dedicated to the application.

      Tuned for Performance
      Bare metal hardware can be tuned for performance and features, be it disabling hyperthreading in the CPU or changing BIOS and IPMI configurations. In the 2018 report, Price-Performance Analysis: Bare Metal vs. Cloud Hosting, INAP Bare Metal was tested against IBM and Amazon AWS cloud offerings. In Hadoop cluster performance testing, INAP’s cluster completed the workload 6% faster than IBM Cloud’s Bare Metal cluster and 6% faster than AWS’s EC2 offering, and 3% faster than AWS’s EMR offering.

      Additional Security on Dedicated Machine Instances
      With a bare metal server, security measures, like full end-to-end encryption or Intel’s Trusted Execution and Open Attestation, can be easily integrated.

      Full Hardware Control
      Bare metal servers allow full control of the hardware environment. This is especially important when integrating SAN storage, specific firewalls and other unique appliances required by your applications.

      Cost Predictability
      Bare metal server instances are generally bundled with bandwidth. This eliminates the need to worry about bandwidth cost overages, which tend to cause significant variations in cloud consumption costs and are a major concern for many organizations. For example, the Price Performance Analysis report concluded that INAP’s Bare Metal machine configuration was 32 percent less expensive than the same configuration running on IBM Cloud. The report can be found for download here.

      Efficient Compute Resources
      Bare metal cloud offers more cost-effective compute resources when compared to the VM-based model for similar compute capacity in terms of cores, memory and storage.

      Bare Metal Cloud Workload Application Use Cases

      Given these benefits, a bare metal cloud provides a competitive advantage for many applications. Feedback from customers indicates it is critical for some use cases. Here is a long—but not exhaustive—list of use cases:

      • High-performance computing, where any overhead should be avoided, and hardware components are selected and tuned for maximum performance: e.g., computing clusters for silicon chip design.
      • AdTech and Fintech applications, especially where Real-Time Bidding (RTB) is involved and speedy access to user profiles and assets data is required.
      • Real-time analytics/recommendation engine clusters where specific hardware and storage is needed to support the real-time nature of the workloads.
      • Gaming applications where performance is needed either for raw compute or 3-D rendering. Hardware is commonly tuned for such applications.
      • Workloads where database access time is essential. In such cases, special hardware components are used, or high performance NVMe-based SAN arrays are integrated.
      • Security-oriented applications that leverage unique Intel/AMD CPU features: end-to-end encryption including memory, trust execution environments, etc.
      • Applications with high outbound bandwidth usage, especially collaboration applications based on real-time communications and webRTC platforms.
      • Cases where a dedicated compute environment is needed either by policy, due to business requirements or for compliance.
      • Most applications where compute resource usage is steady and continuous, the application is not dependent on PaaS services, the hardware footprint size is considerable, and cost is a limiting concern.

      Is Bare Metal Your Best Fit?

      Bare Metal cloud provides many benefits when compared to virtualization-based cloud offerings.

      Bare Metal allows for high performance computing with a highly customizable hardware resources that can be tuned up for maximum performance. It offers a dedicated compute environment with more control on the resources and more security in a cost-effective way.

      Bare metal cloud can be an attractive solution to consider for your next workload or application and it is a choice validated and proven by some of the largest enterprises with mission-critical applications.

      Interested in learning more about INAP Bare Metal?

      CHAT NOW

      Layachi Khodja


      READ MORE



      Source link

      Infrastructure for Online Gaming: Bare Metal and Colocation Reference Architecture


      Bare Metal is powerful, fast and, most importantly, easily scalable—all qualities that make it perfect for resource-intensive, dynamic applications like massive online games. It’s a single-tenant environment, meaning you can harness all the computing power of the hardware for yourself (and without the need for virtualization).

      And beyond that, it offers all that performance and functionality at a competitive price, even when fully customized to your performance needs and unique requirements.

      Given all this, it’s easy to see why Bare Metal has quickly become the infrastructure solution of choice for gaming applications. So what does a comprehensive gaming deployment look like?

      Bare Metal for Gaming: Reference Architecture

      Here’s an example of what a Bare Metal deployment for gaming might look like.

      bare metal gaming reference architecture
      Download this Bare Metal reference architecture [PDF].

      1. Purpose-Built Configurations: Standard configurations are available, but one strength of Bare Metal is its customizability for specific performance needs or unique requirements.

      2. Access the Edge: Solution flexibility and wide reach across a global network puts gaming platforms closer to end users for better performance.

      3. Critical Services: Infrastructure designed for the needs of your application, combined with environment monitoring and support, enables the consistent performance your players expect from any high-quality gaming experience.

      4. Content Delivery Networks: CDNs are perfect for executing software downloads and patch updates or for delivering cut scenes and other static embedded content quickly, while reducing loads on main servers. Read our recent blog about CDN to learn more.

      5. Automated Route Optimization: Your infrastructure is nothing without a solid network to connect it to your players. Ours is powered by our proprietary Performance IP service, which ensures outbound traffic takes the lowest-latency path, reducing lag and packet loss. For more on this technology, read below.

      6. Cloud Connect: On-ramp to hyperscale cloud providers—ideal for test deployments and traffic bursting. If you’re not sure what kind of cloud is right for you, our cloud experts can help you craft a flexible multicloud deployment that meets the needs of your applications and integrates seamlessly into your other infrastructure solutions.

      7. Enterprise SAN Storage: Connect to a high-speed storage area network (SAN) for reliable, secure storage.

      CHAT NOW

      The Need for Ultra-Low Latency

      In online games, latency plays a huge role in the overall gaming experience. Just a few milliseconds of lag can mean the difference between winning and losing—between an immersive experience and something that people stop playing after a few frustrated minutes.

      Minimizing latency is always an ongoing battle, which is why INAP is proud of our automated route optimization engine Performance IP and its proven ability to put outbound traffic on the lowest-latency route possible.

      • Enhances default Border Gateway Protocol (BGP) by automatically routing outbound traffic along the lowest-latency path
      • Millions of optimizations made per location every hour
      • Carrier-diverse IP blend creates network redundancy (up to 7 carriers per location)
      • Supported by complex network security to protect client data and purchases

      Learn more about how it works by watching the video below or jump into a demo to see for yourself the difference that it makes.

      Colocation

      If a hosted model isn’t right for you—maybe you want or need to bring your own hardware—Colocation might be a good way to bring the power, resiliency and availability of modern data centers to your gaming application.

      colocation gaming reference architecture
      Download this Colocation reference architecture [PDF].

      1. Purpose-Built Configurations: Secure cabinets, cages and private suites can be configured to your needs.

      High-Density Colocation: High power density means more bang for your footprint. INAP environments support 20+ kW per rack for efficiency and ease of scalability.

      Designed for Concurrent Maintainability: Tier 3-design data centers provide component redundancy and superior availability.

      2. Automated Route Optimization: Your infrastructure is nothing without a solid network to connect it to your players. Ours is powered by our proprietary Performance IP service, which ensures outbound traffic takes the lowest-latency path, reducing lag and packet loss.

      3. Cloud Connect: On-ramp to hyperscale cloud providers—ideal for test deployments and traffic bursting. If you’re not sure what kind of cloud is right for you, our cloud experts can help you craft a flexible multicloud deployment that meets the needs of your applications and integrates seamlessly into your other infrastructure solutions.

      4. Integrated With Private Cloud & Bare Metal: Run auxiliary or back-office applications in right-sized Private Cloud and/or Bare Metal environments engineered to meet your needs. Get onboarding and support from experts.

      5. Enterprise SAN Storage: Connect to a high-speed storage area network (SAN) for reliable, secure storage.

      Interested in learning more about INAP Bare Metal?

      CHAT NOW

      Josh Williams


      Josh Williams is Vice President of Solutions Engineering. His team enables enterprises and service providers in the design, deployment and management of a wide range of data center and cloud IT solutions. READ MORE



      Source link