One place for hosting & domains

      Customer

      How To Build a Customer List Management App with React and TypeScript


      The author selected the Tech Education Fund to receive a donation as part of the Write for DOnations program.

      Introduction

      TypeScript has brought a lot of improvement into how JavaScript developers structure and write code for apps, especially web applications. Defined as a superset of JavaScript, TypeScript behaves identically to JavaScript but with extra features designed to help developers build larger and more complex programs with fewer or no bugs. TypeScript is increasingly gaining popularity; adopted by major companies like Google for the Angular web framework. The Nest.js back-end framework was also built with TypeScript.

      One of the ways to improve productivity as a developer is the ability to implement new features as quickly as possible without any concern over breaking the existing app in production. To achieve this, writing statically typed code is a style adopted by many seasoned developers. Statically typed programming languages like TypeScript enforce an association for every variable with a data type; such as a string, integer, boolean, and so on. One of the major benefits of using a statically typed programming language is that type checking is completed at compile time, therefore developers can see errors in their code at a very early stage.

      React is an open-source JavaScript library, which developers use to create high-end user interfaces for scalable web applications. The great performance and dynamic user interfaces built with React for single-page applications make it a popular choice among developers.

      In this tutorial, you will create a customer list management application with a separate REST API backend and a frontend built with React and TypeScript. You will build the backend using a fake REST API named json-server. You’ll use it to quickly set up a CRUD (Create, Read, Update, and Delete) backend. Consequently you can focus on handling the front-end logic of an application using React and TypeScript.

      Prerequisites

      To complete this tutorial, you will need:

      Step 1 — Installing TypeScript and Creating the React Application

      In this step, you will install the TypeScript package globally on your machine by using the Node Package Manager (npm). After that, you will also install React and its dependencies, and check that your React app is working by running the development server.

      To begin, open a terminal and run the following command to install TypeScript:

      • npm install -g typescript

      Once the installation process is complete, execute the following command to check your installation of TypeScript:

      You will see the current version installed on your machine:

      Output

      Version 3.4.5

      Next, you will install the React application by using the create-react-app tool to set up the application with a single command. You'll use the npx command, which is a package runner tool that comes with npm 5.2+. The create-react-app tool has built-in support for working with TypeScript without any extra configuration required. Run the following command to create and install a new React application named typescript-react-app:

      • npx create-react-app typescript-react-app --typescript

      The preceding command will create a new React application with the name typescript-react-app. The --typescript flag will set the default filetype for React components to .tsx.

      Before you complete this section, the application will require moving from one port to another. To do that, you will need to install a routing library for your React application named React Router and its corresponding TypeScript definitions. You will use yarn to install the library and other packages for this project. This is because yarn is faster, especially for installing dependencies for a React application. Move into the newly created project folder and then install React Router with the following command:

      • cd typescript-react-app
      • yarn add react-router-dom

      You now have the React Router package, which will provide the routing functionality within your project. Next, run the following command to install the TypeScript definitions for React Router:

      • yarn add @types/react-router-dom

      Now you'll install axios, which is a promised-based HTTP client for browsers, to help with the process of performing HTTP requests from the different components that you will create within the application:

      Once the installation process is complete, start the development server with:

      Your application will be running on http://localhost:3000.

      React application homepage

      You have successfully installed TypeScript, created a new React application, and installed React Router in order to help with navigating from one page of the application to another. In the next section, you will set up the back-end server for the application.

      Step 2 — Creating a JSON Server

      In this step, you'll create a mock server that your React application can quickly connect with, as well as use its resources. It is important to note that this back-end service is not suitable for an application in production. You can use Nest.js, Express, or any other back-end technology to build a RESTful API in production. json-server is a useful tool whenever you need to create a prototype and mock a back-end server.

      You can use either npm or yarn to install json-server on your machine. This will make it available from any directory of your project whenever you might need to make use of it. Open a new terminal window and run this command to install json-server while you are still within the project directory:

      • yarn global add json-server

      Next, you will create a JSON file that will contain the data that will be exposed by the REST API. For the objects specified in this file (which you'll create), a CRUD endpoint will be generated automatically. To begin, create a new folder named server and then move into it:

      Now, use nano to create and open a new file named db.json:

      Add the following content to the file:

      /server/db.json

      {
          "customers": [
              {
                  "id": 1,
                  "first_name": "Customer_1",
                  "last_name": "Customer_11",
                  "email": "customer1@mail.com",
                  "phone": "00000000000",
                  "address": "Customer_1 Address",
                  "description": "Customer_1 description"
              },
              {
                  "id": 2,
                  "first_name": "Customer_2",
                  "last_name": "Customer_2",
                  "email": "customer2@mail.com",
                  "phone": "00000000000",
                  "address": "Customer_2 Adress",
                  "description": "Customer_2 Description"
              }
          ]
      }
      

      The JSON structure consists of a customer object, which has two datasets assigned. Each customer consists of seven properties: id, description, first_name, last_name, email, phone, and address.

      Save and exit the file.

      By default, the json-server runs on port 3000—this is the same port on which your React application runs. To avoid conflict, you can change the default port for the json-server. To do that, move to the root directory of the application:

      • cd ~/typescript-react-app

      Open the application with your preferred text editor and create a new file named json-server.json:

      Now insert the following to update the port number:

      /json-server.json

      {
          "port": 5000
      }
      

      This will act as the configuration file for the json-server and it will ensure that the server runs on the port specified in it at all times.

      Save and exit the file.

      To run the server, use the following command:

      • json-server --watch server/db.json

      This will start the json-server on port 5000. If you navigate to http://localhost:5000/customers in your browser, you will see the server showing your customer list.

      Customer list shown by json-server

      To streamline the process of running the json-server, you can update package.json with a new property named server to the scripts object as shown here:

      /package.json

      {
      ...
        "scripts": {
          "start": "react-scripts start",
          "build": "react-scripts build",
          "test": "react-scripts test",
          "eject": "react-scripts eject",
          "server": "json-server --watch server/db.json"
        },
      ...
      }
      

      Save and exit the file.

      Now anytime you wish to start the json-server, all you have to do is run yarn server from the terminal.

      You've created a simple REST API that you will use as the back-end server for this application. You also created a customer JSON object that will be used as the default data for the REST API. Lastly, you configured an alternative port for the back-end server powered by json-server. Next, you will build reusable components for your application.

      Step 3 — Creating Reusable Components

      In this section, you will create the required React components for the application. This will include components to create, display, and edit the details of a particular customer in the database respectively. You'll also build some of the TypeScript interfaces for your application.

      To begin, move back to the terminal where you have the React application running and stop the development server with CTRL + C. Next, navigate to the ./src/ folder:

      Then, create a new folder named components inside of it and move into the new folder:

      • mkdir components
      • cd components

      Within the newly created folder, create a customer folder and then move into it:

      • mkdir customer
      • cd customer

      Now create two new files named Create.tsx and Edit.tsx:

      • touch Create.tsx Edit.tsx

      These files are React reusable components that will render the forms and hold all the business logic for creating and editing the details of a customer respectively.

      Open the Create.tsx file in your text editor and add the following code:

      /src/components/customer/Create.tsx

      import * as React from 'react';
      import axios from 'axios';
      import { RouteComponentProps, withRouter } from 'react-router-dom';
      
      export interface IValues {
          first_name: string,
          last_name: string,
          email: string,
          phone: string,
          address: string,
          description: string,
      }
      export interface IFormState {
          [key: string]: any;
          values: IValues[];
          submitSuccess: boolean;
          loading: boolean;
      }
      
      

      Here you've imported React, axios, and other required components necessary for routing from the React Router package. After that you created two new interfaces named IValues and IFormState. TypeScript interfaces help to define the specific type of values that should be passed to an object and enforce consistency throughout an application. This ensures that bugs are less likely to appear in your program.

      Next, you will build a Create component that extends React.Component. Add the following code to the Create.tsx file immediately after the IFormState interface:

      /src/components/customer/Create.tsx

      ...
      class Create extends React.Component<RouteComponentProps, IFormState> {
          constructor(props: RouteComponentProps) {
              super(props);
              this.state = {
                  first_name: '',
                  last_name: '',
                  email: '',
                  phone: '',
                  address: '',
                  description: '',
                  values: [],
                  loading: false,
                  submitSuccess: false,
              }
          }
      }
      export default withRouter(Create)
      

      Here you've defined a React component in Typescript. In this case, the Create class component accepts props (short for “properties”) of type RouteComponentProps and uses a state of type IFormState. Then, inside the constructor, you initialized the state object and defined all the variables that will represent the rendered values for a customer.

      Next, add these methods within the Create class component, just after the constructor. You'll use these methods to process customer forms and handle all changes in the input fields:

      /src/components/customer/Create.tsx

      ...
                values: [],
                loading: false,
                submitSuccess: false,
            }
        }
      
        private processFormSubmission = (e: React.FormEvent<HTMLFormElement>): void => {
                e.preventDefault();
                this.setState({ loading: true });
                const formData = {
                    first_name: this.state.first_name,
                    last_name: this.state.last_name,
                    email: this.state.email,
                    phone: this.state.phone,
                    address: this.state.address,
                    description: this.state.description,
                }
                this.setState({ submitSuccess: true, values: [...this.state.values, formData], loading: false });
                axios.post(`http://localhost:5000/customers`, formData).then(data => [
                    setTimeout(() => {
                        this.props.history.push('/');
                    }, 1500)
                ]);
            }
      
            private handleInputChanges = (e: React.FormEvent<HTMLInputElement>) => {
                e.preventDefault();
                this.setState({
                    [e.currentTarget.name]: e.currentTarget.value,
            })
        }
      
      ...
      export default withRouter(Create)
      ...
      

      The processFormSubmission() method receives the details of the customer from the application state and posts it to the database using axios. The handleInputChanges() uses React.FormEvent to obtain the values of all input fields and calls this.setState() to update the state of the application.

      Next, add the render() method within the Create class component immediately after the handleInputchanges() method. This render() method will display the form to create a new customer in the application:

      /src/components/customer/Create.tsx

      ...
        public render() {
            const { submitSuccess, loading } = this.state;
            return (
                <div>
                    <div className={"col-md-12 form-wrapper"}>
                        <h2> Create Post </h2>
                        {!submitSuccess && (
                            <div className="alert alert-info" role="alert">
                                Fill the form below to create a new post
                        </div>
                        )}
                        {submitSuccess && (
                            <div className="alert alert-info" role="alert">
                                The form was successfully submitted!
                                </div>
                        )}
                        <form id={"create-post-form"} onSubmit={this.processFormSubmission} noValidate={true}>
                            <div className="form-group col-md-12">
                                <label htmlFor="first_name"> First Name </label>
                                <input type="text" id="first_name" onChange={(e) => this.handleInputChanges(e)} name="first_name" className="form-control" placeholder="Enter customer's first name" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="last_name"> Last Name </label>
                                <input type="text" id="last_name" onChange={(e) => this.handleInputChanges(e)} name="last_name" className="form-control" placeholder="Enter customer's last name" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="email"> Email </label>
                                <input type="email" id="email" onChange={(e) => this.handleInputChanges(e)} name="email" className="form-control" placeholder="Enter customer's email address" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="phone"> Phone </label>
                                <input type="text" id="phone" onChange={(e) => this.handleInputChanges(e)} name="phone" className="form-control" placeholder="Enter customer's phone number" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="address"> Address </label>
                                <input type="text" id="address" onChange={(e) => this.handleInputChanges(e)} name="address" className="form-control" placeholder="Enter customer's address" />
                            </div>
                            <div className="form-group col-md-12">
                                <label htmlFor="description"> Description </label>
                                <input type="text" id="description" onChange={(e) => this.handleInputChanges(e)} name="description" className="form-control" placeholder="Enter Description" />
                            </div>
                            <div className="form-group col-md-4 pull-right">
                                <button className="btn btn-success" type="submit">
                                    Create Customer
                                </button>
                                {loading &&
                                    <span className="fa fa-circle-o-notch fa-spin" />
                                }
                            </div>
                        </form>
                    </div>
                </div>
            )
        }
      ...
      

      Here, you created a form with the input fields to hold the values of the first_name, last_name, email, phone, address, and description of a customer. Each of the input fields have a method handleInputChanges() that runs on every keystroke, updating the React state with the value it obtains from the input field. Furthermore, depending on the state of the application, a boolean variable named submitSuccess will control the message that the application will display before and after creating a new customer.

      You can see the complete code for this file in this GitHub repository.

      Save and exit Create.tsx.

      Now that you have added the appropriate logic to the Create component file for the application, you'll proceed to add contents for the Edit component file.

      Open your Edit.tsx file within the customer folder, and start by adding the following content to import React, axios, and also define TypeScript interfaces:

      /src/components/customer/Edit.tsx

      import * as React from 'react';
      import { RouteComponentProps, withRouter } from 'react-router-dom';
      import axios from 'axios';
      
      export interface IValues {
          [key: string]: any;
      }
      export interface IFormState {
          id: number,
          customer: any;
          values: IValues[];
          submitSuccess: boolean;
          loading: boolean;
      }
      

      Similarly to the Create component, you import the required modules and create IValues and IFormState interfaces respectively. The IValues interface defines the data type for the input fields' values, while you'll use IFormState to declare the expected type for the state object of the application.

      Next, create the EditCustomer class component directly after the IFormState interface block as shown here:

      /src/components/customer/Edit.tsx

      ...
      class EditCustomer extends React.Component<RouteComponentProps<any>, IFormState> {
          constructor(props: RouteComponentProps) {
              super(props);
              this.state = {
                  id: this.props.match.params.id,
                  customer: {},
                  values: [],
                  loading: false,
                  submitSuccess: false,
              }
          }
      }
      export default withRouter(EditCustomer)
      

      This component takes the RouteComponentProps<any> and an interface of IFormState as a parameter. You use the addition of <any> to the RouteComponentProps because whenever React Router parses path parameters, it doesn’t do any type conversion to ascertain whether the type of the data is number or string. Since you're expecting a parameter for uniqueId of a customer, it is safer to use any.

      Now add the following methods within the component:

      /src/components/customer/Edit.tsx

      ...
          public componentDidMount(): void {
              axios.get(`http://localhost:5000/customers/${this.state.id}`).then(data => {
                  this.setState({ customer: data.data });
              })
          }
      
          private processFormSubmission = async (e: React.FormEvent<HTMLFormElement>): Promise<void> => {
              e.preventDefault();
              this.setState({ loading: true });
              axios.patch(`http://localhost:5000/customers/${this.state.id}`, this.state.values).then(data => {
                  this.setState({ submitSuccess: true, loading: false })
                  setTimeout(() => {
                      this.props.history.push('/');
                  }, 1500)
              })
          }
      
          private setValues = (values: IValues) => {
              this.setState({ values: { ...this.state.values, ...values } });
          }
          private handleInputChanges = (e: React.FormEvent<HTMLInputElement>) => {
              e.preventDefault();
              this.setValues({ [e.currentTarget.id]: e.currentTarget.value })
          }
      ...
      }
      
      export default withRouter(EditCustomer)
      

      First, you add a componentDidMount() method, which is a lifecycle method that is being called when the component is created. The method takes the id obtained from the route parameter to identify a particular customer as a parameter, uses it to retrieve their details from the database and then populates the form with it. Furthermore, you add methods to process form submission and handle changes made to the values of the input fields.

      Lastly, add the render() method for the Edit component:

      /src/components/customer/Edit.tsx

      ...
          public render() {
              const { submitSuccess, loading } = this.state;
              return (
                  <div className="App">
                      {this.state.customer &&
                          <div>
                              < h1 > Customer List Management App</h1>
                              <p> Built with React.js and TypeScript </p>
      
                              <div>
                                  <div className={"col-md-12 form-wrapper"}>
                                      <h2> Edit Customer </h2>
                                      {submitSuccess && (
                                          <div className="alert alert-info" role="alert">
                                              Customer's details has been edited successfully </div>
                                      )}
                                      <form id={"create-post-form"} onSubmit={this.processFormSubmission} noValidate={true}>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="first_name"> First Name </label>
                                              <input type="text" id="first_name" defaultValue={this.state.customer.first_name} onChange={(e) => this.handleInputChanges(e)} name="first_name" className="form-control" placeholder="Enter customer's first name" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="last_name"> Last Name </label>
                                              <input type="text" id="last_name" defaultValue={this.state.customer.last_name} onChange={(e) => this.handleInputChanges(e)} name="last_name" className="form-control" placeholder="Enter customer's last name" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="email"> Email </label>
                                              <input type="email" id="email" defaultValue={this.state.customer.email} onChange={(e) => this.handleInputChanges(e)} name="email" className="form-control" placeholder="Enter customer's email address" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="phone"> Phone </label>
                                              <input type="text" id="phone" defaultValue={this.state.customer.phone} onChange={(e) => this.handleInputChanges(e)} name="phone" className="form-control" placeholder="Enter customer's phone number" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="address"> Address </label>
                                              <input type="text" id="address" defaultValue={this.state.customer.address} onChange={(e) => this.handleInputChanges(e)} name="address" className="form-control" placeholder="Enter customer's address" />
                                          </div>
                                          <div className="form-group col-md-12">
                                              <label htmlFor="description"> Description </label>
                                              <input type="text" id="description" defaultValue={this.state.customer.description} onChange={(e) => this.handleInputChanges(e)} name="description" className="form-control" placeholder="Enter Description" />
                                          </div>
                                          <div className="form-group col-md-4 pull-right">
                                              <button className="btn btn-success" type="submit">
                                                  Edit Customer </button>
                                              {loading &&
                                                  <span className="fa fa-circle-o-notch fa-spin" />
                                              }
                                          </div>
                                      </form>
                                  </div>
                              </div>
                          </div>
                      }
                  </div>
              )
          }
      ...    
      

      Here, you created a form to edit the details of a particular customer, and then populated the input fields within that form with the customer's details that your application's state obtained. Similarly to the Create component, changes made to all the input fields will be handled by the handleInputChanges() method.

      You can see the complete code for this file in this GitHub repository.

      Save and exit Edit.tsx.

      To view the complete list of customers created within the application, you’ll create a new component within the ./src/components folder and name it Home.tsx:

      • cd ./src/components
      • nano Home.tsx

      Add the following content:

      /src/components/Home.tsx

      import * as React from 'react';
      import { Link, RouteComponentProps } from 'react-router-dom';
      import axios from 'axios';
      
      interface IState {
          customers: any[];
      }
      
      export default class Home extends React.Component<RouteComponentProps, IState> {
          constructor(props: RouteComponentProps) {
              super(props);
              this.state = { customers: [] }
          }
          public componentDidMount(): void {
              axios.get(`http://localhost:5000/customers`).then(data => {
                  this.setState({ customers: data.data })
              })
          }
          public deleteCustomer(id: number) {
              axios.delete(`http://localhost:5000/customers/${id}`).then(data => {
                  const index = this.state.customers.findIndex(customer => customer.id === id);
                  this.state.customers.splice(index, 1);
                  this.props.history.push('/');
              })
          }
      }
      

      Here, you've imported React, axios, and other required components from React Router. You created two new methods within the Home component:

      • componentDidMount(): The application invokes this method immediately after a component is mounted. Its responsibility here is to retrieve the list of customers and update the home page with it.
      • deleteCustomer(): This method will accept an id as a parameter and will delete the details of the customer identified with that id from the database.

      Now add the render() method to display the table that holds the list of customers for the Home component:

      /src/components/Home.tsx

      ...
      public render() {
              const customers = this.state.customers;
              return (
                  <div>
                      {customers.length === 0 && (
                          <div className="text-center">
                              <h2>No customer found at the moment</h2>
                          </div>
                      )}
                      <div className="container">
                          <div className="row">
                              <table className="table table-bordered">
                                  <thead className="thead-light">
                                      <tr>
                                          <th scope="col">Firstname</th>
                                          <th scope="col">Lastname</th>
                                          <th scope="col">Email</th>
                                          <th scope="col">Phone</th>
                                          <th scope="col">Address</th>
                                          <th scope="col">Description</th>
                                          <th scope="col">Actions</th>
                                      </tr>
                                  </thead>
                                  <tbody>
                                      {customers && customers.map(customer =>
                                          <tr key={customer.id}>
                                              <td>{customer.first_name}</td>
                                              <td>{customer.last_name}</td>
                                              <td>{customer.email}</td>
                                              <td>{customer.phone}</td>
                                              <td>{customer.address}</td>
                                              <td>{customer.description}</td>
                                              <td>
                                                  <div className="d-flex justify-content-between align-items-center">
                                                      <div className="btn-group" style={{ marginBottom: "20px" }}>
                                                          <Link to={`edit/${customer.id}`} className="btn btn-sm btn-outline-secondary">Edit Customer </Link>
                                                          <button className="btn btn-sm btn-outline-secondary" onClick={() => this.deleteCustomer(customer.id)}>Delete Customer</button>
                                                      </div>
                                                  </div>
                                              </td>
                                          </tr>
                                      )}
                                  </tbody>
                              </table>
                          </div>
                      </div>
                  </div>
              )
          }
      ...
      

      In this code block, you retrieve the lists of customers from the application's state as an array, iterate over it, and display it within an HTML table. You also add the customer.id parameter, which the method uses to identify and delete the details of a particular customer from the list.

      Save and exit Home.tsx.

      You've adopted a statically typed principle for all the components created with this application by defining types for the components and props through the use of interfaces. This is one of the best approaches to using TypeScript for a React application.

      With this, you've finished creating all the required reusable components for the application. You can now update the app component with links to all the components that you have created so far.

      Step 4 — Setting Up Routing and Updating the Entry Point of the Application

      In this step, you will import the necessary components from the React Router package and configure the App component to render different components depending on the route that is loaded. This will allow you to navigate through different pages of the application. Once a user visits a route, for example /create, React Router will use the path specified to render the contents and logic within the appropriate component defined to handle such route.

      Navigate to ./src/App.tsx:

      Then replace its content with the following:

      /src/App.tsx

      import * as React from 'react';
      import './App.css';
      import { Switch, Route, withRouter, RouteComponentProps, Link } from 'react-router-dom';
      import Home from './components/Home';
      import Create from './components/customer/Create';
      import EditCustomer from './components/customer/Edit';
      
      class App extends React.Component<RouteComponentProps<any>> {
        public render() {
          return (
            <div>
              <nav>
                <ul>
                  <li>
                    <Link to={'/'}> Home </Link>
                  </li>
                  <li>
                    <Link to={'/create'}> Create Customer </Link>
                  </li>
                </ul>
              </nav>
              <Switch>
                <Route path={'/'} exact component={Home} />
                <Route path={'/create'} exact component={Create} />
                <Route path={'/edit/:id'} exact component={EditCustomer} />
              </Switch>
            </div>
          );
        }
      }
      export default withRouter(App);
      

      You imported all the necessary components from the React Router package and you also imported the reusable components for creating, editing, and viewing customers' details.

      Save and exit App.tsx.

      The ./src/index.tsx file is the entry point for this application and renders the application. Open this file and import React Router into it, then wrap the App component inside a BrowserRouter:

      /src/index.tsx

      import React from 'react';
      import ReactDOM from 'react-dom';
      import './index.css';
      import App from './App';
      import { BrowserRouter } from 'react-router-dom'; 
      import * as serviceWorker from './serviceWorker';
      ReactDOM.render(
          <BrowserRouter>
              <App />
          </BrowserRouter>
          , document.getElementById('root')
      );
      serviceWorker.unregister();
      

      React Router uses the BrowserRouter component to make your application aware of the navigation, such as history and current path.

      Once you've finished editing Index.tsx, save and exit.

      Lastly, you will use Bootstrap to add some style to your application. Bootstrap is a popular HTML, CSS, and JavaScript framework for developing responsive, mobile-first projects on the web. It allows developers to build an appealing user interface without having to write too much CSS. It comes with a responsive grid system that gives a web page a finished look that works on all devices.

      To include Bootstrap and styling for your application, replace the contents of ./src/App.css with the following:

      /src/App.css

      @import 'https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css';
      
      .form-wrapper {
        width: 500px;
        margin: 0 auto;
      }
      .App {
        text-align: center;
        margin-top: 30px;
      }
      nav {
        width: 300px;
        margin: 0 auto;
        background: #282c34;
        height: 70px;
        line-height: 70px;
      }
      nav ul li {
        display: inline;
        list-style-type: none;
        text-align: center;
        padding: 30px;
      }
      nav ul li a {
        margin: 50px 0;
        font-weight: bold;
        color: white;
        text-decoration: none;
      }
      nav ul li a:hover {
        color: white;
        text-decoration: none;
      }
      table {
        margin-top: 50px;
      }
      .App-link {
        color: #61dafb;
      }
      @keyframes App-logo-spin {
        from {
          transform: rotate(0deg);
        }
        to {
          transform: rotate(360deg);
        }
      }
      

      You have used Bootstrap here to enhance the look and feel of the application by giving it a default layout, styles, and color. You have also added some custom styles, particularly to the navigation bar.

      Save and exit App.css.

      In this section, you have configured React Router to render the appropriate component depending on the route visited by the user and also added some styling to make the application more attractive to users. Next, you will test all the functionality implemented for the application.

      Step 5 — Running Your Application

      Now that you have set up the frontend of this application with React and TypeScript by creating several reusable components, and also built a REST API with the json-server, you can run your app.

      Navigate back to the project’s root folder:

      • cd ~/typescript-react-app

      Next run the following command to start your app:

      Note: Make sure your server is still running in the other terminal window. Otherwise, start it with: yarn server.

      Navigate to http://localhost:3000 to view the application from your browser. Then proceed to click on the Create button and fill in the details of a customer.

      Create customer page

      After entering the appropriate values in the input fields, click on the Create Customer button to submit the form. The application will redirect you back to your homepage once you're done creating a new customer.

      View customers page

      Click the Edit Customer button for any of the rows and you will be directed to the page that hosts the editing functionality for the corresponding customer on that row.

      Edit customer page

      Edit the details of the customer and then click on Edit Customer to update the customer’s details.

      You've run your application to ensure all the components are working. Using the different pages of your application, you've created and edited a customer entry.

      Conclusion

      In this tutorial you built a customer list management app with React and TypeScript. The process in this tutorial is a deviation from using JavaScript as the conventional way of structuring and building applications with React. You've leveraged the benefits of using TypeScript to complete this front-end focused tutorial.

      To continue to develop this project, you can move your mock back-end server to a production-ready back-end technology like Express or Nest.js. Furthermore, you can extend what you have built in this tutorial by adding more features such as authentication and authorization with different tools like the Passport.js authentication library.

      You can find the complete source code for the project on GitHub.



      Source link

      INAP Customer Story: See How Hi-Rez Studios Provides Seamless Online Gaming Experiences to Millions Worldwide


      To the eSports and online gaming community, Hi-Rez Studios needs no introduction. The company’s massively popular titles—which include the multiplayer online battle arena (MOBA) game SMITE and objective-based team first-person shooter Paladins—have been played by more than 70 million people worldwide, putting the company at the forefront of the free-to-play, games-as-a-service industry.

      Since 2008, Hi-Rez has powered its games via INAP Bare Metal, custom managed hosting and the patented, latency-busting network optimization technology: Performance IP®. Today, 100 percent of Hi-Rez’s ever-increasing gaming traffic is routed through INAP data centers.

      “In online games, lag kills,” said Todd Harris, Chief Operating Officer at Hi-Rez. “To deliver the best experience, we have to make sure that gamers are able to play on the best network while using the most efficient route. INAP delivers all of that.”

      Our latest customer story with Hi-Rez, debuting this week at Game Developers Conference 2019, frames the partnership through the lens of a multiplayer match interface—from the party select and weapon loadout menus through the stage results and achievements.

      Read “Titans of Performance” below and download or share the eBook via Slideshare.













      Interested in learning more about INAP Bare Metal?

      CHAT NOW

      Ryan Hunt
      • Sr. Communications Manager


      Ryan Hunt is Senior Communications Manager. READ MORE



      Source link

      How Your Online Business Can Nail Customer Service During the Holiday Rush


      The holiday season is upon us once more, and that means many things for your business. On the one hand, you’re about to enter the most lucrative period of the year. However, you’ll also be considerably busier than usual, and will likely need to deal with a much higher number of customer support queries.

      To make sure your support can cope with the holiday rush, you’ll want to plan ahead. Strengthening and preparing your support team is key to helping them provide assistance for a huge influx of stressed customers. If you do that, you’ll be able to reap the benefits of the season more effectively.

      In this article, we’ll discuss why it’s particularly important to provide quality customer service throughout the holidays. We’ll also offer some tips for how you can prepare your business and support team in advance. Let’s get started!

      Why Customer Service Matters Most During the Holidays

      If you’re anything like us, you’re getting busier by the day preparing for the holiday season. However, this isn’t just a time for buying gifts and eating good food. It’s also the most critical period for businesses, as many companies make the bulk of their yearly sales during the last few weeks of the year.

      However, to make sure your business takes full advantage of this period, you’ll need to plan ahead carefully. There are plenty of ways to ensure that you’re ready for the holiday rush, and one of the most crucial is making sure your customer service will function flawlessly.

      Of course, providing high-quality customer support is always necessary. During the holiday rush, however, you will most likely be inundated with even more support queries, questions, and confused customers than at any other time of the year. And because of high stress levels, you’re also more likely to end up dealing with some frustrated and potentially antagonistic customers.

      This might sound intimidating. By preparing in advance and making a solid plan, however, you can ensure that your customer service will remain top-notch even under less-than-ideal circumstances. Not only will this help your customers, but it will be a huge benefit to you and your customer service agents as well.

      10 Ways to Prepare Your Customer Service for the Holiday Rush

      If you’re wondering: “When should I start to prepare for the holidays?”, our answer is right now! It’s never too early to start planning for the year’s final month, but having a plan in place at least before the beginning of December is highly recommended.

      With that in mind, we’re going to guide you through some of the most important steps you’ll want to take. Here are 10 things you can do prepare your customer service before Santa arrives!

      1. Analyze Last Year’s Data

      A perfect place to start your planning is to look back at the previous year. This will involve examining the volume of calls and messages you received, finding out what the most common pain points were, and trying to understand where your service may have been lacking.

      Having this data at hand will be a huge help when formulating a plan for the upcoming rush. You’ll be able to improve in areas where you’ve struggled previously, and you can also preemptively provide information for the most common customer questions. In turn, this will cut down on the number of queries your team has to field.

      How you go about doing this analysis will naturally depend on your toolset. If you’re using software like Zendesk or Awesome Support, you can just view the statistics and queries from previous years. You should also liaise with your support and marketing teams, as they’ll be best equipped to tell you where you need to focus your attention.

      Here are some vital questions you’ll want to be able to answer:

      • How much larger is the volume of support queries you receive during the holiday shopping period, compared with the rest of the year?
      • What are the most common questions customers have?
      • How are most people choosing to contact you — via email, phone, chat, or some other medium?

      Of course, this is by no means an exhaustive list. However, these answers will help you immensely throughout the rest of your preparations.

      2. Decide Which Support Channels to Focus On

      It’s essential that you know where to focus your attention during the holiday season. At first glance, it might seem like the best route to use every conceivable method of contact, but this can lead to spreading yourself too thin.

      Imagine that you have to simultaneously juggle phone lines, live chat, emails, and social media, in addition to updating your content and dealing with orders and shipping. In this scenario, you’ll likely see most — if not all — of those channels suffer in quality. This is especially true if you only have a small support team.

      To avoid this problem, you’ll need to consider which channels of communication to focus on. The best way to start is by looking at which channels are most commonly used by your customers. As we mentioned in the previous section, looking at earlier years’ support queries will give you a good baseline to work from. However, you’ll also want to consider which channels are most popular during the rest of the year.

      For example, if you find that your customers are primarily calling in or using your contact form throughout the year, it’s fair to assume that these will be the busiest channels during the holidays as well. Knowing this will let you assign more people to handle those channels, and avoid keeping customers waiting.

      3. Prepare for Quick Scaling

      The truth is that no matter how well you plan, the holidays are never completely predictable. This means you’ll need to have a contingency plan, in case you need to scale up or down with little notice.

      For example, what if you face twice as many support requests as you anticipated? You’ll need to be able to assign more time and manpower to deal with them, while also keeping the rest of your operations afloat. In this scenario, you might consider hiring remote seasonal workers to help out.

      This is something many companies do to handle the increased volume of work during the holidays. Hiring temporary workers gives you the freedom to change the size of your team at almost a moment’s notice. For example, you could use a service like PartnerHero to outsource some or all of your customer support work during this period.

      Naturally, you’ll need to ensure that these seasonal workers have all the assets and information they need, which is something we’ll discuss later on. With the right preparations in place, they should be able to slot into your normal operations with little friction and help you deal with almost any unexpected situation.

      4. Keep Your Customers Informed

      Arguably the most significant way to avoid customer frustration is to manage their expectations. If your support is changing during the holidays, you need to make that clear as early as possible. They’ll need to be aware of when and how they will be able to contact you.

      It’s also smart to let customers know how your other operations are likely to alter. For example, will returns take longer to process, and will they need to wait a bit for responses to their emails? By letting them know what to expect, you can keep them informed and minimize the risk of frustration or hostility.

      One strategy you can use to your advantage is sometimes referred to as “underpromise and overdeliver.” The idea is that you prepare customers for potential issues that may arise, but then work to avoid those problems anyway. This lets you exceed their expectations.

      Overall, our recommendation is to be honest about what customers can expect and to make any changes clear through as many channels as possible. That includes on your website, social media, and even your email list. This will ensure that the bulk of your customers know what to expect.

      5. Use Automation to Your Advantage

      When the season gets going and you find yourself swamped in tasks, every second will count. To make sure you can use your available time most efficiently, you’ll want to consider automating tasks whenever it’s possible to do so.

      For instance, you can create an automated workflow using software like Help Scout. This can be set up to redirect customer queries to the person or team best suited to deal with them. Not only will this save time on your end, but it will also keep waiting times down for your stressed customers.

      Workflows also let you handle plenty of other tasks automatically, such as tracking products to let you know right away when stocks are low. You can then deal with the potential issue before it becomes a full-blown problem.

      There are plenty of other ways you can use automation during the holidays. One of the best strategies is to set up an AI-driven chatbot that can help you deal with the most common questions. This can dramatically cut down on the amount of time the human members of your team need to spend on customer support requests.

      6. Implement a Triage System for Support Queries

      In addition to automating parts of your support system, you can also optimize it by introducing a triage process. This involves sorting tasks and support queries into categories depending on their urgency. You can then prioritize more urgent matters first, while non-emergency tasks can be dealt with later.

      Implementing triage into your customer service will let you focus your attention on what matters most at any given time. The most pressing and time-sensitive tasks can be dealt with right away, minimizing the risk of making your customers feel frustrated and hostile.

      An easy way to do this is to simply categorize each customer query according to priority. If an issue needs to be dealt with immediately, you might label it as “critical,” while if it needs to be looked at within 1-2 hours it could be labeled “urgent.” Issues that can wait a day or two, on the other hand, can be noted as “low priority.”

      However, you need to remember that you’ll still have to actually deal with all requests. If you find that you’re never getting around to handling low-priority tasks, you may need to consider scaling your team up temporarily by assigning additional personnel.

      7. Update Your Content and Knowledge Base

      Earlier, we discussed the importance of keeping your customers informed. However, this extends beyond just letting them know about changes to your schedule. By making sure that all of your content and assets are up-to-date, you can save both customers and yourself a lot of time and hassle.

      For example, if you provide a knowledge base with information about your products and services, you can use it to answer most of the most commonly asked questions during the holiday period. In many cases, your support team can simply refer customers to relevant knowledge base articles, answering their queries quickly.

      For this to work, you’ll obviously need to ensure that you provide as much documentation and information as possible. It also needs to be thoroughly updated, to ensure that you don’t cause additional confusion among your customers.

      If you need to set up a knowledge base, you can use a plugin such as Heroic Knowledge Base. If you already have one, on the other hand, you should perform a content audit well before the holiday rush kicks in. This can also involve reviewing similar resources, such as your FAQ page.

      8. Learn How to Help Stressed Customers

      The holidays are intended to offer relaxation and fun, but we all know that it can also be a thoroughly stressful period. As such, you’re likely to deal with a few customers who are particularly difficult, frustrated, or even outright antagonistic.

      Naturally, you’ll need to prepare in order to help them out and avoid angering them further. Dealing with difficult customers is a delicate task. The most valuable advice we can offer is to train your support team to stay calm and professional at all times, no matter what a customer might say.

      In addition, here are some ways you can approach particularly challenging customers:

      • Listen. If the customer feels like they’re being deflected or ignored, they’re only going to get angrier and less responsive.
      • Be quick. Naturally, your goal is to be as a fast as possible with all support queries. However, it can be worth prioritizing more stressed customers, to avoid further incident.
      • Treat them like people. We discussed the value of automation earlier, but in tough cases, it’s better to take a personal approach. Make it clear to the customer that you’re handling their issue and care about their frustration, so they don’t feel like they’re being treated as a nuisance.

      In short, by listening to the customer and being prepared to meet them halfway, you can usually solve even the most heated of issues.

      9. Prepare to Provide Compensation to Customers

      In some situations, you may need to compensate customers. Especially in the most volatile or challenging cases, a simple gift can help to smooth things over immensely. Some customers might even demand this kind of treatment.

      Providing compensation can help to soften even the most upset customers. It can also win back some goodwill. Your goal is to ensure that the customer considers using your business again in the future, despite their current grievances.

      Naturally, you’ll want to be very careful about how and when you compensate customers. In some cases, such as when they’ve received a faulty product, you may be legally obligated to provide a new item or a refund.

      However, you can also provide compensation if a customer has had a particularly difficult experience, either with your business or your customer service. This could be in the form of a small gift, a coupon, a discount, or anything else that’s convenient but useful to the customer.

      10. Take Care of Your Support Team

      Finally, while it’s obviously necessary to take care of your customers, you shouldn’t ignore the people on your own front lines. Beginning on Black Friday and Cyber Monday, the holiday rush is a stressful experience for everyone, especially those who have to field questions and requests from wound-up customers.

      Depending on the size of your business, you can take care of your support team in several ways. Naturally, you should make sure they have everything they’ll need to do their jobs without incident.

      However, it’s also nice to reward your support team further, to show your appreciation for all their hard work. Even something as simple as the occasional gift, like seasonally appropriate sweets and drinks, can do a lot to raise morale during this hectic season.

      Holiday Shopping Made Easy

      The holidays are meant to be a time of joy, but it can be hard to feel merry if your customer service is strained. By preparing well in advance, you can put a plan into place, train your team, and inform your customers — providing effective and efficient support as a result.

      Do you have any questions about how to handle customer support during the holiday rush? Find us on social and let’s start the conversation!





      Source link