One place for hosting & domains

      Choosing a Linux Distribution


      Updated by Linode

      Written by Ryan Syracuse

      What is a Distribution?

      Distributions or “distros” can be described as different operating system versions built on top of the underlying Linux Kernel to support a variety of use-cases and preferences. Since all distributions are built on Linux, most are similar and can be used interchangeably. Ubuntu, for example, is the most popular for it’s ease of use and the ability to abstract smaller configuration tasks for you by default. Arch Linux on the other hand does not provide this simplicity in favor of more control, so that you can fine tune the way that your system
      functions.

      Below is a full list of distributions that we provide, and a brief description of each:

      Distribution Description
      Alpine Lightweight distribution popular with Docker and security minded users.
      Arch Powerful and detail oriented, empowers more advanced users to fine tune their configuration.
      CentOS Widely popular in professional and business settings while still being accessible to the average user.
      CoreOS Container-focused distribution, designed for clustered deployments
      Debian One of the oldest distributions in use, popular, steady, and reliable. Regularly updated and maintained.
      Fedora Implements bleeding edge software. Fedora is similar though more advanced than CentOS and great for users who want to use the newest of the new and don’t mind an added layer of complexity.
      Gentoo Advanced distribution designed for power users who want more control over their configuration and are comfortable compiling everything from source.
      Slackware The oldest actively maintained distribution. One of the most UNIX-like Linux distributions available.
      Ubuntu Arguably the most popular Linux distribution, widely regarded for it’s ease of use.
      OpenSUSE Provides powerful tools specific to system administration tasks.

      Note

      Though this list covers most popular distributions, creating a Linode using a distribution that we do not provide is possible. Feel free to follow our Custom Distribution Guide for more information.

      Find answers, ask questions, and help others.

      This guide is published under a CC BY-ND 4.0 license.



      Source link

      How To Install Linux, Apache, MariaDB, PHP (LAMP) stack on Debian 10


      Introduction

      A “LAMP” stack is a group of open-source software that is typically installed together to enable a server to host dynamic websites and web apps. This term is actually an acronym which represents the Linux operating system, with the Apache web server. The site data is stored in a MariaDB database, and dynamic content is processed by PHP.

      Although this software stack typically includes MySQL as the database management system, some Linux distributions — including Debian — use MariaDB as a drop-in replacement for MySQL.

      In this guide, we will install a LAMP stack on a Debian 10 server, using MariaDB as the database management system.

      Prerequisites

      In order to complete this tutorial, you will need to have a Debian 10 server with a non-root sudo-enabled user account and a basic firewall. This can be configured using our initial server setup guide for Debian 10.

      Step 1 — Installing Apache and Updating the Firewall

      The Apache web server is among the most popular web servers in the world. It’s well-documented and has been in wide use for much of the history of the web, which makes it a great default choice for hosting a website.

      Install Apache using Debian’s package manager, APT:

      • sudo apt update
      • sudo apt install apache2

      Since this is a sudo command, these operations are executed with root privileges. It will ask you for your regular user’s password to verify your intentions.

      Once you’ve entered your password, apt will tell you which packages it plans to install and how much extra disk space they’ll take up. Press Y and hit ENTER to continue, and the installation will proceed.

      Next, assuming that you have followed the initial server setup instructions by installing and enabling the UFW firewall, make sure that your firewall allows HTTP and HTTPS traffic.

      When installed on Debian 10, UFW comes loaded with app profiles which you can use to tweak your firewall settings. View the full list of application profiles by running:

      The WWW profiles are used to manage ports used by web servers:

      Output

      Available applications: . . . WWW WWW Cache WWW Full WWW Secure . . .

      If you inspect the WWW Full profile, it shows that it enables traffic to ports 80 and 443:

      • sudo ufw app info "WWW Full"

      Output

      Profile: WWW Full Title: Web Server (HTTP,HTTPS) Description: Web Server (HTTP,HTTPS) Ports: 80,443/tcp

      Allow incoming HTTP and HTTPS traffic for this profile:

      • sudo ufw allow in "WWW Full"

      You can do a spot check right away to verify that everything went as planned by visiting your server's public IP address in your web browser:

      http://your_server_ip
      

      You will see the default Debian 10 Apache web page, which is there for informational and testing purposes. It should look something like this:

      Debian 10 Apache default

      If you see this page, then your web server is now correctly installed and accessible through your firewall.

      If you do not know what your server's public IP address is, there are a number of ways you can find it. Usually, this is the address you use to connect to your server through SSH.

      There are a few different ways to do this from the command line. First, you could use the iproute2 tools to get your IP address by typing this:

      • ip addr show eth0 | grep inet | awk '{ print $2; }' | sed 's//.*$//'

      This will give you two or three lines back. They are all correct addresses, but your computer may only be able to use one of them, so feel free to try each one.

      An alternative method is to use the curl utility to contact an outside party to tell you how it sees your server. This is done by asking a specific server what your IP address is:

      • sudo apt install curl
      • curl http://icanhazip.com

      Regardless of the method you use to get your IP address, type it into your web browser's address bar to view the default Apache page.

      Step 2 — Installing MariaDB

      Now that you have a web server up and running, you need to install the database system to be able to store and manage data for your site.

      In Debian 10, the metapackage mysql-server, which was traditionally used to install the MySQL server, was replaced by default-mysql-server. This metapackage references MariaDB, a community fork of the original MySQL server by Oracle, and it's currently the default MySQL-compatible database server available on debian-based package manager repositories.

      For longer term compatibility, however, it’s recommended that instead of using the metapackage you install MariaDB using the program’s actual package, mariadb-server.

      To install this software, run:

      • sudo apt install mariadb-server

      When the installation is finished, it's recommended that you run a security script that comes pre-installed with MariaDB. This script will remove some insecure default settings and lock down access to your database system. Start the interactive script by running:

      • sudo mysql_secure_installation

      This script will take you through a series of prompts where you can make some changes to your MariaDB setup. The first prompt will ask you to enter the current database root password. This is not to be confused with the system root. The database root user is an administrative user with full privileges over the database system. Because you just installed MariaDB and haven’t made any configuration changes yet, this password will be blank, so just press ENTER at the prompt.

      The next prompt asks you whether you'd like to set up a database root password. Because MariaDB uses a special authentication method for the root user that is typically safer than using a password, you don't need to set this now. Type N and then press ENTER.

      From there, you can press Y and then ENTER to accept the defaults for all the subsequent questions. This will remove anonymous users and the test database, disable remote root login, and load these new rules so that MariaDB immediately respects the changes you have made.
      When you're finished, log in to the MariaDB console by typing:

      This will connect to the MariaDB server as the administrative database user root, which is inferred by the use of sudo when running this command. You should see output like this:

      Output

      Welcome to the MariaDB monitor. Commands end with ; or g. Your MariaDB connection id is 74 Server version: 10.3.15-MariaDB-1 Debian 10 Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others. Type 'help;' or 'h' for help. Type 'c' to clear the current input statement. MariaDB [(none)]>

      Notice that you didn't need to provide a password to connect as the root user. That works because the default authentication method for the administrative MariaDB user is unix_socket instead of password. Even though this might look like a security concern at first, it makes the database server more secure because the only users allowed to log in as the root MariaDB user are the system users with sudo privileges connecting from the console or through an application running with the same privileges. In practical terms, that means you won't be able to use the administrative database root user to connect from your PHP application.

      For increased security, it's best to have dedicated user accounts with less expansive privileges set up for every database, especially if you plan on having multiple databases hosted on your server. To demonstrate such a setup, we'll create a database named example_database and a user named example_user, but you can replace these names with different values.
      To create a new database, run the following command from your MariaDB console:

      • CREATE DATABASE example_database;

      Now you can create a new user and grant them full privileges on the custom database you've just created. The following command defines this user's password as password, but you should replace this value with a secure password of your own choosing.

      • GRANT ALL ON example_database.* TO 'example_user'@'localhost' IDENTIFIED BY 'password' WITH GRANT OPTION;

      This will give the example_user user full privileges over the example_database database, while preventing this user from creating or modifying other databases on your server.

      Flush the privileges to ensure that they are saved and available in the current session:

      Following this, exit the MariaDB shell:

      You can test if the new user has the proper permissions by logging in to the MariaDB console again, this time using the custom user credentials:

      • mariadb -u example_user -p

      Note the -p flag in this command, which will prompt you for the password used when creating the example_user user. After logging in to the MariaDB console, confirm that you have access to the example_database database:

      This will give you the following output:

      Output

      +--------------------+ | Database | +--------------------+ | example_database | | information_schema | +--------------------+ 2 rows in set (0.000 sec)

      To exit the MariaDB shell, type:

      At this point, your database system is set up and you can move on to installing PHP, the final component of the LAMP stack.

      Step 3 — Installing PHP

      PHP is the component of your setup that will process code to display dynamic content. It can run scripts, connect to your MariaDB databases to get information, and hand the processed content over to your web server to display.

      Once again, leverage the apt system to install PHP. In addition, include some helper packages which will ensure that PHP code can run under the Apache server and talk to your MariaDB database:

      • sudo apt install php libapache2-mod-php php-mysql

      This should install PHP without any problems. We'll test this in a moment.

      In most cases, you will want to modify the way that Apache serves files. Currently, if a user requests a directory from the server, Apache will first look for a file called index.html. We want to tell the web server to prefer PHP files over others, so make Apache look for an index.php file first.

      To do this, type the following command to open the dir.conf file in a text editor with root privileges:

      • sudo nano /etc/apache2/mods-enabled/dir.conf

      It will look like this:

      /etc/apache2/mods-enabled/dir.conf

      <IfModule mod_dir.c>
          DirectoryIndex index.html index.cgi index.pl index.php index.xhtml index.htm
      </IfModule>
      

      Move the PHP index file (highlighted above) to the first position after the DirectoryIndex specification, like this:

      /etc/apache2/mods-enabled/dir.conf

      <IfModule mod_dir.c>
          DirectoryIndex index.php index.html index.cgi index.pl index.xhtml index.htm
      </IfModule>
      

      When you are finished, save and close the file. If you're using nano, you can do that by pressing CTRL+X, then Y and ENTER to confirm.

      Now reload Apache's configuration with:

      • sudo systemctl reload apache2

      You can check on the status of the apache2 service with systemctl status:

      • sudo systemctl status apache2

      Sample Output

      ● apache2.service - The Apache HTTP Server Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor preset: enabled) Active: active (running) since Mon 2019-07-08 12:58:31 UTC; 8s ago Docs: https://httpd.apache.org/docs/2.4/ Process: 11948 ExecStart=/usr/sbin/apachectl start (code=exited, status=0/SUCCESS) Main PID: 11954 (apache2) Tasks: 6 (limit: 4719) Memory: 11.5M CGroup: /system.slice/apache2.service ├─11954 /usr/sbin/apache2 -k start ├─11955 /usr/sbin/apache2 -k start ├─11956 /usr/sbin/apache2 -k start ├─11957 /usr/sbin/apache2 -k start ├─11958 /usr/sbin/apache2 -k start └─11959 /usr/sbin/apache2 -k start

      At this point, your LAMP stack is fully operational, but before you can test your setup with a PHP script it's best to set up a proper Apache Virtual Host to hold your website's files and folders. We'll do that in the next step.

      Step 4 — Creating a Virtual Host for your Website

      By default, Apache serves its content from a directory located at /var/www/html, using the configuration contained in /etc/apache2/sites-available/000-default.conf. Instead of modifying the default website configuration file, we are going to create a new virtual host for testing your PHP environment. Virtual hosts enable us to keep multiple websites hosted on a single Apache server.

      Following that, you'll create a directory structure within /var/www for an example website named your_domain.

      Create the root web directory for your_domain as follows:

      • sudo mkdir /var/www/your_domain

      Next, assign ownership of the directory with the $USER environment variable, which should reference your current system user:

      • sudo chown -R $USER:$USER /var/www/your_domain

      Then, open a new configuration file in Apache's sites-available directory using your preferred command-line editor. Here, we'll use nano:

      • sudo nano /etc/apache2/sites-available/your_domain.conf

      This will create a new blank file. Paste in the following bare-bones configuration:

      /etc/apache2/sites-available/your_domain

      <VirtualHost *:80>
          ServerName your_domain
          ServerAlias www.your_domain 
          ServerAdmin webmaster@localhost
          DocumentRoot /var/www/your_domain
          ErrorLog ${APACHE_LOG_DIR}/error.log
          CustomLog ${APACHE_LOG_DIR}/access.log combined
      </VirtualHost>
      

      With this VirtualHost configuration, we're telling Apache to serve your_domain using /var/www/your_domain as the web root directory. If you'd like to test Apache without a domain name, you can remove or comment out the options ServerName and ServerAlias by adding a # character in the beginning of each option's lines.

      You can now use a2ensite to enable this virtual host:

      • sudo a2ensite your_domain

      You might want to disable the default website that comes installed with Apache. This is required if you're not using a custom domain name, because in this case Apache's default configuration would overwrite your Virtual Host. To disable Apache's default website, type:

      • sudo a2dissite 000-default

      To make sure your configuration file doesn't contain syntax errors, you can run:

      • sudo apache2ctl configtest

      Finally, reload Apache so these changes take effect:

      • sudo systemctl reload apache2

      Your new website is now active, but the web root /var/www/your_domain is still empty. In the next step, we'll create a PHP script to test the new setup and confirm that PHP is correctly installed and configured on your server.

      Step 5 — Testing PHP Processing on your Web Server

      Now that you have a custom location to host your website's files and folders, we'll create a simple PHP test script to confirm that Apache is able to handle and process requests for PHP files.

      Create a new file named info.php inside your custom web root folder:

      • nano /var/www/your_domain/info.php

      This will open a blank file. Add the following text, which is valid PHP code, inside the file:

      /var/www/your_domain/info.php

      <?php
      phpinfo();
      

      When you are finished, save and close the file.

      Now you can test whether your web server is able to correctly display content generated by this PHP script. To try this out, visit this page in your web browser. You'll need your server's public IP address again.

      The address you will want to visit is:

      http://your_domain/info.php
      

      You should see a page similar to this:

      Debian 10 default PHP info

      This page provides some basic information about your server from the perspective of PHP. It is useful for debugging and to ensure that your settings are being applied correctly.

      If you can see this page in your browser, then your PHP installation is working as expected.

      After checking the relevant information about your PHP server through that page, it's best to remove the file you created as it contains sensitive information about your PHP environment and your Debian server. You can use rm to do so:

      • sudo rm /var/www/your_domain/info.php

      You can always recreate this page if you need to access the information again later.

      Step 6 — Testing Database Connection from PHP (Optional)

      If you want to test whether PHP is able to connect to MariaDB and execute database queries, you can create a test table with dummy data and query for its contents from a PHP script.

      First, connect to the MariaDB console with the database user you created in Step 2 of this guide:

      • mariadb -u example_user -p

      Create a table named todo_list. From the MariaDB console, run the following statement:

      • CREATE TABLE example_database.todo_list (
      • item_id INT AUTO_INCREMENT,
      • content VARCHAR(255),
      • PRIMARY KEY(item_id)
      • );

      Now, insert a few rows of content in the test table. You might want to repeat the next command a few times, using different values:

      • INSERT INTO example_database.todo_list (content) VALUES ("My first important item");

      To confirm that the data was successfully saved to your table, run:

      • SELECT * FROM example_database.todo_list;

      You will see the following output:

      Output

      +---------+--------------------------+ | item_id | content | +---------+--------------------------+ | 1 | My first important item | | 2 | My second important item | | 3 | My third important item | | 4 | and this one more thing | +---------+--------------------------+ 4 rows in set (0.000 sec)

      After confirming that you have valid data in your test table, you can exit the MariaDB console:

      Now you can create the PHP script that will connect to MariaDB and query for your content. Create a new PHP file in your custom web root directory using your preferred editor. We'll use nano for that:

      • nano /var/www/your_domain/todo_list.php

      The following PHP script connects to the MariaDB database and queries for the content of the todo_list table, exhibiting the results in a list. If there's a problem with the database connection, it will throw an exception.
      Copy this content into your todo_list.php script:

      /var/www/your_domain/todo_list.php

      <?php
      $user = "example_user";
      $password = "password";
      $database = "example_database";
      $table = "todo_list";
      
      try {
        $db = new PDO("mysql:host=localhost;dbname=$database", $user, $password);
        echo "<h2>TODO</h2><ol>"; 
        foreach($db->query("SELECT content FROM $table") as $row) {
          echo "<li>" . $row['content'] . "</li>";
        }
        echo "</ol>";
      } catch (PDOException $e) {
          print "Error!: " . $e->getMessage() . "<br/>";
          die();
      }
      

      Save and close the file when you're done editing.

      You can now access this page in your web browser by visiting the domain name or public IP address for your website, followed by /todo_list.php:

      http://your_domain/todo_list.php
      

      You should see a page like this, showing the content you've inserted in your test table:

      Example PHP todo list

      That means your PHP environment is ready to connect and interact with your MariaDB server.

      Conclusion

      In this guide, we've built a flexible foundation for serving PHP websites and applications to your visitors, using Apache as web server and MariaDB as database system.

      To further improve your current setup, you can install an OpenSSL certificate for your website using Let's Encrypt.



      Source link

      How To Install Linux, Nginx, MariaDB, PHP (LEMP stack) on Debian 10


      Introduction

      The LEMP software stack is a group of software that can be used to serve dynamic web pages and web applications. The name “LEMP” is an acronym that describes a Linux operating system, with an (E)Nginx web server. The backend data is stored in a MariaDB database and the dynamic processing is handled by PHP.

      Although this software stack typically includes MySQL as the database management system, some Linux distributions — including Debian — use MariaDB as a drop-in replacement for MySQL.

      In this guide, you’ll install a LEMP stack on a Debian 10 server using MariaDB as the database management system.

      Prerequisites

      To complete this guide, you will need access to a Debian 10 server. This server should have a regular user configured with sudo privileges and a firewall enabled with ufw. To set this up, you can follow our Initial Server Setup with Debian 10 guide.

      Step 1 — Installing the Nginx Web Server

      In order to serve web pages to your site visitors, we are going to employ Nginx, a popular web server which is well known for its overall performance and stability.

      All of the software you will be using for this procedure will come directly from Debian’s default package repositories. This means you can use the apt package management suite to complete the installation.

      Since this is the first time you’ll be using apt for this session, you should start off by updating your local package index. You can then install the server:

      • sudo apt update
      • sudo apt install nginx

      On Debian 10, Nginx is configured to start running upon installation.

      If you have the ufw firewall running, you will need to allow connections to Nginx. You should enable the most restrictive profile that will still allow the traffic you want. Since you haven’t configured SSL for your server yet, for now you only need to allow HTTP traffic on port 80.

      You can enable this by typing:

      • sudo ufw allow 'Nginx HTTP'

      You can verify the change by typing:

      You should see HTTP traffic allowed in the displayed output:

      Output

      Status: active To Action From -- ------ ---- OpenSSH ALLOW Anywhere Nginx HTTP ALLOW Anywhere OpenSSH (v6) ALLOW Anywhere (v6) Nginx HTTP (v6) ALLOW Anywhere (v6)

      Now, test if the server is up and running by accessing your server's domain name or public IP address in your web browser. If you do not have a domain name pointed at your server and you do not know your server's public IP address, you can find it by typing one of the following into your terminal:

      • ip addr show eth0 | grep inet | awk '{ print $2; }' | sed 's//.*$//'

      This will print out a few IP addresses. You can try each of them in turn in your web browser.

      Type one of the addresses that you receive in your web browser. It should take you to Nginx's default landing page:

      http://your_domain_or_IP
      

      Nginx default page

      If you see the above page, you have successfully installed Nginx.

      Step 2 — Installing MariaDB

      Now that you have a web server up and running, you need to install the database system to be able to store and manage data for your site.

      In Debian 10, the metapackage mysql-server, which was traditionally used to install the MySQL server, was replaced by default-mysql-server. This metapackage references MariaDB, a community fork of the original MySQL server by Oracle, and it's currently the default MySQL-compatible database server available on debian-based package manager repositories.

      For longer term compatibility, however, it’s recommended that instead of using the metapackage you install MariaDB using the program’s actual package, mariadb-server.

      To install this software, run:

      • sudo apt install mariadb-server

      When the installation is finished, it's recommended that you run a security script that comes pre-installed with MariaDB. This script will remove some insecure default settings and lock down access to your database system. Start the interactive script by running:

      • sudo mysql_secure_installation

      This script will take you through a series of prompts where you can make some changes to your MariaDB setup. The first prompt will ask you to enter the current database root password. This is not to be confused with the system root. The database root user is an administrative user with full privileges over the database system. Because you just installed MariaDB and haven’t made any configuration changes yet, this password will be blank, so just press ENTER at the prompt.

      The next prompt asks you whether you'd like to set up a database root password. Because MariaDB uses a special authentication method for the root user that is typically safer than using a password, you don't need to set this now. Type N and then press ENTER.

      From there, you can press Y and then ENTER to accept the defaults for all the subsequent questions. This will remove anonymous users and the test database, disable remote root login, and load these new rules so that MariaDB immediately respects the changes you have made.
      When you're finished, log in to the MariaDB console by typing:

      This will connect to the MariaDB server as the administrative database user root, which is inferred by the use of sudo when running this command. You should see output like this:

      Output

      Welcome to the MariaDB monitor. Commands end with ; or g. Your MariaDB connection id is 74 Server version: 10.3.15-MariaDB-1 Debian 10 Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others. Type 'help;' or 'h' for help. Type 'c' to clear the current input statement. MariaDB [(none)]>

      Notice that you didn't need to provide a password to connect as the root user. That works because the default authentication method for the administrative MariaDB user is unix_socket instead of password. Even though this might look like a security concern at first, it makes the database server more secure because the only users allowed to log in as the root MariaDB user are the system users with sudo privileges connecting from the console or through an application running with the same privileges. In practical terms, that means you won't be able to use the administrative database root user to connect from your PHP application.

      For increased security, it's best to have dedicated user accounts with less expansive privileges set up for every database, especially if you plan on having multiple databases hosted on your server. To demonstrate such a setup, we'll create a database named example_database and a user named example_user, but you can replace these names with different values.
      To create a new database, run the following command from your MariaDB console:

      • CREATE DATABASE example_database;

      Now you can create a new user and grant them full privileges on the custom database you've just created. The following command defines this user's password as password, but you should replace this value with a secure password of your own choosing.

      • GRANT ALL ON example_database.* TO 'example_user'@'localhost' IDENTIFIED BY 'password' WITH GRANT OPTION;

      This will give the example_user user full privileges over the example_database database, while preventing this user from creating or modifying other databases on your server.

      Flush the privileges to ensure that they are saved and available in the current session:

      Following this, exit the MariaDB shell:

      You can test if the new user has the proper permissions by logging in to the MariaDB console again, this time using the custom user credentials:

      • mariadb -u example_user -p

      Note the -p flag in this command, which will prompt you for the password used when creating the example_user user. After logging in to the MariaDB console, confirm that you have access to the example_database database:

      This will give you the following output:

      Output

      +--------------------+ | Database | +--------------------+ | example_database | | information_schema | +--------------------+ 2 rows in set (0.000 sec)

      To exit the MariaDB shell, type:

      At this point, your database system is set up and you can move on to installing PHP, the final component of the LEMP stack.

      Step 3 — Installing PHP for Processing

      You have Nginx installed to serve your content and MySQL installed to store and manage your data. Now you can install PHP to process code and generate dynamic content for the web server.

      While Apache embeds the PHP interpreter in each request, Nginx requires an external program to handle PHP processing and act as bridge between the PHP interpreter itself and the web server. This allows for a better overall performance in most PHP-based websites, but it requires additional configuration. You'll need to install php-fpm, which stands for "PHP fastCGI process manager", and tell Nginx to pass PHP requests to this software for processing. Additionally, you'll need php-mysql, a PHP module that allows PHP to communicate with MySQL-based databases. Core PHP packages will automatically be installed as dependencies.

      To install the php-fpm and php-mysql packages, run:

      • sudo apt install php-fpm php-mysql

      You now have your PHP components installed. Next, you'll configure Nginx to use them.

      Step 4 — Configuring Nginx to Use the PHP Processor

      When using the Nginx web server, server blocks (similar to virtual hosts in Apache) can be used to encapsulate configuration details and host more than one domain on a single server. In this guide, we'll use your_domain as example domain name. To learn more about setting up a domain name with DigitalOcean, see our introduction to DigitalOcean DNS.

      OnDebian 10, Nginx has one server block enabled by default and is configured to serve documents out of a directory at /var/www/html. While this works well for a single site, it can become difficult to manage if you are hosting multiple sites. Instead of modifying /var/www/html, let's create a directory structure within /var/www for the your_domain website, leaving /var/www/html in place as the default directory to be served if a client request doesn't match any other sites.

      Create the root web directory for your_domain as follows:

      • sudo mkdir /var/www/your_domain

      Next, assign ownership of the directory with the $USER environment variable, which should reference your current system user:

      • sudo chown -R $USER:$USER /var/www/your_domain

      Then, open a new configuration file in Nginx's sites-available directory using your preferred command-line editor. Here, we'll use nano:

      • sudo nano /etc/nginx/sites-available/your_domain

      This will create a new blank file. Paste in the following bare-bones configuration:

      /etc/nginx/sites-available/your_domain

      server {
          listen 80;
          listen [::]:80;
      
          root /var/www/your_domain;
          index index.php index.html index.htm;
      
          server_name your_domain;
      
          location / {
              try_files $uri $uri/ =404;
          }
      
          location ~ .php$ {
              include snippets/fastcgi-php.conf;
              fastcgi_pass unix:/var/run/php/php7.3-fpm.sock;
          }
      }
      

      This is a basic configuration that listens on port 80 and serves files from the web root you just created. It will only respond to requests to the host or IP address provided after server_name, and any files ending in .php will be processed by php-fpm before Nginx sends the results to the user.

      When you're done editing, save and close the file. If you used nano to create the file, do so by typing CTRL+X and then y and ENTER to confirm.

      Activate your configuration by linking to the config file from Nginx's sites-enabled directory:

      • sudo ln -s /etc/nginx/sites-available/your_domain /etc/nginx/sites-enabled/

      This will tell Nginx to use the configuration next time it is reloaded. You can test your configuration for syntax errors by typing:

      If any errors are reported, go back to your configuration file to review its contents before continuing.

      When you are ready, reload Nginx to make the changes:

      • sudo systemctl reload nginx

      Next, you'll create a file in your new web root directory to test out PHP processing.

      Step 5 — Creating a PHP File to Test Configuration

      Your LEMP stack should now be completely set up. You can test it to validate that Nginx can correctly hand .php files off to your PHP processor.

      You can do this by creating a test PHP file in your document root. Open a new file called info.php within your document root in your text editor:

      • nano /var/www/your_domain/info.php

      Type or paste the following lines into the new file. This is valid PHP code that will return information about your server:

      /var/www/your_domain/info.php

      <?php
      phpinfo();
      

      When you are finished, save and close the file by typing CTRL+X and then y and ENTER to confirm.

      You can now access this page in your web browser by visiting the domain name or public IP address you've set up in your Nginx configuration file, followed by /info.php:

      http://your_domain/info.php
      

      You will see a web page containing detailed information about your server:

      PHP page info

      After checking the relevant information about your PHP server through that page, it's best to remove the file you created as it contains sensitive information about your PHP environment and your Debian server. You can use rm to remove that file:

      • sudo rm /var/www/your_domain/info.php

      You can always regenerate this file if you need it later. Next, we'll test the database connection from the PHP side.

      Step 6 — Testing Database Connection from PHP (Optional)

      If you want to test if PHP is able to connect to MariaDB and execute database queries, you can create a test table with dummy data and query for its contents from a PHP script.

      First, connect to the MariaDB console with the database user you created in Step 2 of this guide:

      • mariadb -u example_user -p

      Create a table named todo_list. From the MariaDB console, run the following statement:

      CREATE TABLE example_database.todo_list (
          item_id INT AUTO_INCREMENT,
          content VARCHAR(255),
          PRIMARY KEY(item_id)
      );
      

      Now, insert a few rows of content in the test table. You might want to repeat the next command a few times, using different values:

      • INSERT INTO example_database.todo_list (content) VALUES ("My first important item");

      To confirm that the data was successfully saved to your table, run:

      • SELECT * FROM example_database.todo_list;

      You will see the following output:

      Output

      +---------+--------------------------+ | item_id | content | +---------+--------------------------+ | 1 | My first important item | | 2 | My second important item | | 3 | My third important item | | 4 | and this one more thing | +---------+--------------------------+ 4 rows in set (0.000 sec)

      After confirming that you have valid data in your test table, you can exit the MariaDB console:

      Now you can create the PHP script that will connect to MariaDB and query for your content. Create a new PHP file in your custom web root directory using your preferred editor. We'll use nano for that:

      • nano /var/www/your_domain/todo_list.php

      Add the following content to your PHP script:

      <?php
      $user = "example_user";
      $password = "password";
      $database = "example_database";
      $table = "todo_list";
      
      try {
        $db = new PDO("mysql:host=localhost;dbname=$database", $user, $password);
        echo "<h2>TODO</h2><ol>"; 
        foreach($db->query("SELECT content FROM $table") as $row) {
          echo "<li>" . $row['content'] . "</li>";
        }
        echo "</ol>";
      } catch (PDOException $e) {
          print "Error!: " . $e->getMessage() . "<br/>";
          die();
      }
      

      Save and close the file when you're done editing.

      You can now access this page in your web browser by visiting the domain name or public IP address you've set up in your Nginx configuration file, followed by /todo_list.php:

      http://your_domain/todo_list.php
      

      You should see a page like this, showing the content you've inserted in your test table:

      Example PHP todo list

      That means your PHP environment is ready to connect and interact with your MariaDB server.

      Conclusion

      In this guide, you've built a flexible foundation for serving PHP websites and applications to your visitors, using Nginx as web server. You've set up Nginx to handle PHP requests through php-fpm, and you also set up a MariaDB database to store your website's data.

      To further improve your current setup, you can install Composer for dependency and package management in PHP, and you can also set up an OpenSSL certificate for your website using Let's Encrypt.



      Source link