One place for hosting & domains

      Network

      How To Configure BIND as a Private Network DNS Server on Ubuntu 18.04


      Introdução

      Uma parte importante do gerenciamento da configuração e infraestrutura de servidores inclui a manutenção de maneira fácil de verificar as interfaces de rede e endereços IP por nome, através da configuração de um Sistema de Nome de Domínio (DNS). Ao usar os nomes de domínio totalmente qualificados (FQDNs), ao invés de endereços IP para especificar os endereços de rede, facilita-se a configuração de serviços e aplicativos e aumenta-se a capacidade de manutenção dos arquivos de configuração. Configurar seu próprio DNS para sua rede privada é uma ótima maneira de melhorar o gerenciamento dos seus servidores.

      Neste tutorial, veremos como configurar um servidor DNS interno usando o software de servidor de nomes BIND (BIND9) no Ubuntu 18.04, que pode ser usado pelos seus servidores para resolver nomes de host e endereços IP privados. Isso fornece uma maneira central de gerenciamento dos seus nomes de host e endereços IP privados internos, o que é indispensável quando seu ambiente se expande para mais de alguns poucos hosts.

      A versão CentOS deste tutorial pode ser encontrada aqui.

      Pré-requisitos

      Para completar este tutorial, você precisará das seguinte infraestrutura. Crie cada servidor no mesmo datacenter com o modo de rede privada habilitado:

      • Um servidor Ubuntu 18.04 para servir como o servidor DNS primário, o ns1
      • (Recomendado) Um segundo servidor Ubuntu 18.04 para servir como um servidor DNS secundário, o ns2
      • Servidores adicionais no mesmo datacenter que usarão seus servidores DNS

      Em cada um desses servidores, configure o acesso administrativo por um usuário sudo e um firewall seguindo nosso guia de configuração inicial do servidor Ubuntu 18.04.

      Se você não estiver familiarizado com os conceitos do DNS, é recomendável que você leia pelo menos as três primeiras partes da nossa Introdução ao gerenciamento do DNS.

      Exemplo de infraestrutura e objetivos

      Para os fins deste artigo, vamos assumir o seguinte:

      • Temos dois servidores que serão designados como nossos servidores de nome DNS. Vamos nos referir a eles como ns1 e ns2 neste guia.
      • Temos dois servidores de cliente adicionais que irão usar a infraestrutura DNS que criamos. Vamos chamá-los host1 e host2 neste guia. Você pode adicionar quantos quiser para sua infraestrutura.
      • Todos esses servidores existem no mesmo datacenter. Vamos assumir que este datacenter chama-se nyc3.
      • Todos esses servidores têm o modo de rede privada habilitado (e estão na sub-rede 10.128.0.0/16. É provável que você tenha que ajustar isso para seus servidores).
      • Todos os servidores estão conectados a um projeto executado em “example.com”. Como nosso sistema DNS será totalmente interno e privado, você não precisa comprar um nome de domínio. No entanto, usar um domínio que você possui pode ajudar a evitar conflitos com domínios de encaminhamento público.

      Com essas suposições, decidimos que é sensato usar um esquema de nomeação que usa “nyc3.example.com” para se referir à nossa sub-rede ou zona privada. Portanto, o Nome de domínio totalmente qualificado (FQDN) privado do host1 será host1.nyc3.example.com. Consulte a tabela a seguir com os detalhes relevantes:

      Host Função FQDN privado Endereço IP privado
      ns1 Servidor DNS primário ns1.nyc3.example.com 10.128.10.11
      ns2 Servidor DNS secundário n2.nyc3.example.com 10.128.20.12
      host1 Host genérico 1 host1.nyc3.example.com 10.128.100.101
      host2 Host genérico 2 host2.nyc3.example.com 10.128.200.102

      Nota: A sua configuração existente será diferente, mas os nomes dos exemplos e endereços IP serão usados para demonstrar como configurar um servidor DNS para fornecer um DNS interno funcional. Você consegue adaptar essa configuração ao seu ambiente com facilidade, pela substituição dos nomes de host e endereços IP privados pelos seus. Não é necessário usar o nome regional do datacenter no seu esquema de nomeação, mas usamos ele aqui para denotar que esses hosts pertencem a uma rede privada de um datacenter particular. Se você usar vários datacenters, é possível configurar um DNS interno dentro de cada datacenter respectivo.

      Ao final deste tutorial, teremos um servidor DNS primário, ns1, e opcionalmente um servidor DNS secundário, ns2, que servirá como backup.

      Vamos começar pela instalação do nosso servidor DNS primário, o ns1.

      Como instalar o BIND nos servidores DNS

      Nota: As passagens que estiverem destacadas em vermelho são importantes! Normalmente, elas serão usadas para denotar algo que precisa ser substituído pelas suas próprias configurações ou que deve ser modificado ou adicionado a um arquivo de configuração. Por exemplo, se você ver algo como host1.nyc3.example.com, substitua-o pelo FQDN do seu próprio servidor. De forma similar, se você ver host1_private_IP, substitua-o pelo endereço IP privado do seu próprio servidor.

      Em ambos os servidores DNS, ns1 e ns2, atualize o cache de pacotes apt digitando:

      Agora, instale o BIND:

      • sudo apt-get install bind9 bind9utils bind9-doc

      Como configurar o Bind para o modo IPv4

      Antes de continuar, vamos colocar o BIND no modo IPv4, já que nossa rede privada usa exclusivamente o IPv4. Nos dois servidores, edite o arquivo de configuração padrão bind9 digitando:

      • sudo nano /etc/default/bind9

      Adicione “-4” ao final do parâmetro OPTIONS. Ele deve se parecer com o seguinte:

      /etc/default/bind9

      . . .
      OPTIONS="-u bind -4"
      

      Salve e feche o arquivo quando você terminar.

      Reinicie o BIND para implementar as alterações:

      • sudo systemctl restart bind9

      Agora que o BIND está instalado, vamos configurar o servidor DNS primário.

      Como configurar o servidor DNS primário

      A configuração do BIND consiste em vários arquivos, que estão incluídos no arquivo de configuração principal, o named.conf. Estes nomes de arquivos começam com named porque este é o nome do processo que o BIND executa (abreviação de “domain name daemon”). Vamos começar configurando o arquivo de opções.

      Como configurar o arquivo de opções

      No ns1, abra o arquivo named.conf.options para edição:

      • sudo nano /etc/bind/named.conf.options

      Acima do bloco options existente, crie um bloco ALC (lista de controle de acesso) new chamado “confiáveis”. É aqui que vamos definir uma lista de clientes para os quais consultas recursivas DNS serão permitidas (ou seja, seus servidores que estão no mesmo datacenter que o ns1). Usando nosso exemplo de endereço IP privado, serão adicionados o ns1, ns2, host1 e host2 à nossa lista de clientes confiáveis:

      /etc/bind/named.conf.options — 1 of 3

      acl "trusted" {
              10.128.10.11;    # ns1 - can be set to localhost
              10.128.20.12;    # ns2
              10.128.100.101;  # host1
              10.128.200.102;  # host2
      };
      
      options {
      
              . . .
      

      Agora que temos nossa lista de clientes DNS confiáveis, queremos editar o bloco options. Atualmente, o início do bloco se parece com o seguinte:

      /etc/bind/named.conf.options — 2 of 3

              . . .
      };
      
      options {
              directory "/var/cache/bind";
              . . .
      }
      

      Abaixo da diretriz directory, adicione as linhas de configuração destacadas (e substitua no endereço IP do ns1 apropriado) para que fique dessa forma:

      /etc/bind/named.conf.options — 3 of 3

              . . .
      
      };
      
      options {
              directory "/var/cache/bind";
      
              recursion yes;                 # enables resursive queries
              allow-recursion { trusted; };  # allows recursive queries from "trusted" clients
              listen-on { 10.128.10.11; };   # ns1 private IP address - listen on private network only
              allow-transfer { none; };      # disable zone transfers by default
      
              forwarders {
                      8.8.8.8;
                      8.8.4.4;
              };
      
              . . .
      };
      

      Quando você terminar, salve e feche o arquivo named.conf.options. A configuração acima especifica que apenas seus próprios servidores (os “confiáveis”) poderão consultar seu servidor DNS para domínios externos.

      Em seguida, vamos configurar o arquivo local para especificar nossas zonas de DNS.

      Como configurar o arquivo local

      No ns1, abra o arquivo named.conf.local para edição:

      • sudo nano /etc/bind/named.conf.local

      Com exceção de alguns comentários, o arquivo deve estar vazio. Aqui, vamos especificar nossa zona de encaminhamento e nossa zona inversa. As zonas de DNS designam um escopo específico para o gerenciamento e definição dos registros de DNS. Como todos nossos domínios estarão dentro do sub-domínio “nyc3.example.com”, usaremos ele como nossa zona de encaminhamento. Como os endereços IP privados dos nossos servidores estão no espaço de IP 10.128.0.0/16, uma zona inversa será configurada para que possamos definir pesquisas inversas dentro desse intervalo.

      Adicione a zona de encaminhamento com as linhas a seguir, substituindo o nome da zona pelo seu próprio e o endereço IP privado do servidor DNS secundário na diretriz allow-transfer:

      /etc/bind/named.conf.local — 1 of 2

      zone "nyc3.example.com" {
          type master;
          file "/etc/bind/zones/db.nyc3.example.com"; # zone file path
          allow-transfer { 10.128.20.12; };           # ns2 private IP address - secondary
      };
      

      Supondo que nossa sub-rede privada seja 10.128.0.0/16, adicione a zona reversa com as linhas a seguir (note que nosso nome da zona reversa inicia com “128.10”, que é a reversão do octeto reverso de “10.128”):

      /etc/bind/named.conf.local — 2 of 2

          . . .
      };
      
      zone "128.10.in-addr.arpa" {
          type master;
          file "/etc/bind/zones/db.10.128";  # 10.128.0.0/16 subnet
          allow-transfer { 10.128.20.12; };  # ns2 private IP address - secondary
      };
      

      Se seus servidores se estendem por várias sub-redes privadas mas estão no mesmo datacenter, certifique-se de especificar uma zona adicional e um arquivo de zona para cada sub-rede distinta. Quando terminar de adicionar todas as suas zonas desejadas, salve e saia do arquivo named.conf.local.

      Agora que nossas zonas estão especificadas em BIND, precisamos criar os arquivos correspondentes da zona de encaminhamento e da zona reversa.

      Como criar o arquivo da zona de encaminhamento

      O arquivo da zona de encaminhamento está onde definimos os registros DNS para pesquisas de encaminhamentos de DNS. Isso é, quando o DNS receber um nome de consulta, “host1.nyc3.example.com”, por exemplo, ele olhará no arquivo da zona de encaminhamento para resolver o endereço IP privado correspondente do host1.

      Vamos criar o diretório onde nossos arquivos de zona irão permanecer. De acordo com nossa configuração named.conf.local, esse local deve ser o /etc/bind/zones:

      • sudo mkdir /etc/bind/zones

      Vamos basear nosso arquivo da zona de encaminhamento no arquivo de zona amostral db.local. Copie-o para o local correto com os seguintes comandos:

      • sudo cp /etc/bind/db.local /etc/bind/zones/db.nyc3.example.com

      Agora, vamos editar nosso arquivo da zona de encaminhamento:

      • sudo nano /etc/bind/zones/db.nyc3.example.com

      Inicialmente, ele se parecerá com o seguinte:

      /etc/bind/zones/db.nyc3.example.com — original

      $TTL    604800
      @       IN      SOA     localhost. root.localhost. (
                                    2         ; Serial
                               604800         ; Refresh
                                86400         ; Retry
                              2419200         ; Expire
                               604800 )       ; Negative Cache TTL
      ;
      @       IN      NS      localhost.      ; delete this line
      @       IN      A       127.0.0.1       ; delete this line
      @       IN      AAAA    ::1             ; delete this line
      

      Primeiro, vamos editar o registro do SOA. Substitua o primeiro “localhost” pelo FQDN do ns1 e então substitua “root.localhost” por “admin.nyc3.example.com”. Toda vez que você editar um arquivo de zona, será necessário aumentar o valor serial antes de reiniciar o processo named. Vamos incrementá-lo para “3”. Agora, ele deve se parecer com isso:

      /etc/bind/zones/db.nyc3.example.com — updated 1 of 3

      @       IN      SOA     ns1.nyc3.example.com. admin.nyc3.example.com. (
                                    3         ; Serial
      
                                    . . .
      

      Em seguida, delete os três registros ao final do arquivo (depois do registro do SOA). Se não tiver certeza sobre quais linhas excluir, elas estão marcadas acima com um comentário “delete this line”.

      Ao final do arquivo, adicione os registros do servidor do seu nome com as linhas a seguir (substitua os nomes pelos seus próprios). Note que a segunda coluna especifica que esses registros são “NS”:

      /etc/bind/zones/db.nyc3.example.com — updated 2 of 3

      . . .
      
      ; name servers - NS records
          IN      NS      ns1.nyc3.example.com.
          IN      NS      ns2.nyc3.example.com.
      

      Agora, adicione os registros A para seus hosts que pertencem a esta zona. Isso inclui qualquer servidor cujo nome queremos que termine com “.nyc3.example.com” (substitua os nomes e endereços IP privados). Usando nossos nomes de exemplo e endereços IP privados, vamos adicionar registros A para o ns1, ns2, host1 e host2 desta forma:

      /etc/bind/zones/db.nyc3.example.com — updated 3 of 3

      . . .
      
      ; name servers - A records
      ns1.nyc3.example.com.          IN      A       10.128.10.11
      ns2.nyc3.example.com.          IN      A       10.128.20.12
      
      ; 10.128.0.0/16 - A records
      host1.nyc3.example.com.        IN      A      10.128.100.101
      host2.nyc3.example.com.        IN      A      10.128.200.102
      

      Salve e feche o arquivo db.nyc3.example.com.

      Nosso arquivo de exemplo final da zona de encaminhamento se parece com o seguinte:

      /etc/bind/zones/db.nyc3.example.com — updated

      $TTL    604800
      @       IN      SOA     ns1.nyc3.example.com. admin.nyc3.example.com. (
                        3     ; Serial
                   604800     ; Refresh
                    86400     ; Retry
                  2419200     ; Expire
                   604800 )   ; Negative Cache TTL
      ;
      ; name servers - NS records
           IN      NS      ns1.nyc3.example.com.
           IN      NS      ns2.nyc3.example.com.
      
      ; name servers - A records
      ns1.nyc3.example.com.          IN      A       10.128.10.11
      ns2.nyc3.example.com.          IN      A       10.128.20.12
      
      ; 10.128.0.0/16 - A records
      host1.nyc3.example.com.        IN      A      10.128.100.101
      host2.nyc3.example.com.        IN      A      10.128.200.102
      

      Agora, vamos seguir para o(s) arquivo(s) da zona reversa.

      Como criar o(s) arquivo(s) da zona reversa

      Os arquivos da zona reverso estão onde definimos os registros DNS PTR para pesquisas de DNS reverso. Isso é, quando o DNS recebe uma consulta pelo endereço IP, “10.128.100.101”, por exemplo, ele olhará no(s) arquivo(s) da zona reversa para resolver o FQDN correspondente, sendo ele, o “host1.nyc3.example.com” neste caso.

      No ns1, para cada zona reversa especificada no arquivo named.conf.local, crie um arquivo de zona reversa. Vamos basear nosso(s) arquivo(s) de zona reversa no arquivo de zona amostral db.127. Copie-o para o local correto com os seguintes comandos (subtituindo o nome do arquivo de destino para que ele corresponda à definição da sua zona reversa):

      • sudo cp /etc/bind/db.127 /etc/bind/zones/db.10.128

      Edite o arquivo de zona reversa que corresponde à(s) zona(s) reversa(s) definida(s) em named.conf.local:

      • sudo nano /etc/bind/zones/db.10.128

      Inicialmente, ele se parecerá com o seguinte:

      /etc/bind/zones/db.10.128 — original

      $TTL    604800
      @       IN      SOA     localhost. root.localhost. (
                                    1         ; Serial
                               604800         ; Refresh
                                86400         ; Retry
                              2419200         ; Expire
                               604800 )       ; Negative Cache TTL
      ;
      @       IN      NS      localhost.      ; delete this line
      1.0.0   IN      PTR     localhost.      ; delete this line
      

      De maneira similar ao arquivo de zona de encaminhamento, edite o registro do SOA e aumente o valor serial. Ela deve se parecer com isto:

      /etc/bind/zones/db.10.128 — updated 1 of 3

      @       IN      SOA     ns1.nyc3.example.com. admin.nyc3.example.com. (
                                    3         ; Serial
      
                                    . . .
      

      Agora, delete os dois registros ao final do arquivo (depois do registro do SOA). Se não tiver certeza sobre quais linhas excluir, elas estão marcadas acima com um comentário “delete this line”.

      Ao final do arquivo, adicione os registros do servidor do seu nome com as linhas a seguir (substitua os nomes pelos seus próprios). Note que a segunda coluna especifica que esses registros são “NS”:

      /etc/bind/zones/db.10.128 — updated 2 of 3

      . . .
      
      ; name servers - NS records
            IN      NS      ns1.nyc3.example.com.
            IN      NS      ns2.nyc3.example.com.
      

      Então, adicione os registros PTR para todos os seus servidores cujos endereços IP estão na sub-rede do arquivo de zona que está editando. No nosso exemplo, isso inclui todos os nossos hosts porque eles estão todos na sub-rede 10.128.0.0/16. Note que a primeira coluna consiste nos dois últimos octetos dos endereços IP privados dos seus servidores em reversed order. Certifique-se de substituir os nomes e endereços IP privados para corresponder aos seus servidores:

      /etc/bind/zones/db.10.128 — updated 3 of 3

      . . .
      
      ; PTR Records
      11.10   IN      PTR     ns1.nyc3.example.com.    ; 10.128.10.11
      12.20   IN      PTR     ns2.nyc3.example.com.    ; 10.128.20.12
      101.100 IN      PTR     host1.nyc3.example.com.  ; 10.128.100.101
      102.200 IN      PTR     host2.nyc3.example.com.  ; 10.128.200.102
      

      Salve e feche o arquivo de zona reversa (repita essa seção caso precise adicionar mais arquivos de zona reversa).

      Nosso arquivo de exemplo final de zona reversa se parece com o seguinte:

      /etc/bind/zones/db.10.128 — updated

      $TTL    604800
      @       IN      SOA     nyc3.example.com. admin.nyc3.example.com. (
                                    3         ; Serial
                               604800         ; Refresh
                                86400         ; Retry
                              2419200         ; Expire
                               604800 )       ; Negative Cache TTL
      ; name servers
            IN      NS      ns1.nyc3.example.com.
            IN      NS      ns2.nyc3.example.com.
      
      ; PTR Records
      11.10   IN      PTR     ns1.nyc3.example.com.    ; 10.128.10.11
      12.20   IN      PTR     ns2.nyc3.example.com.    ; 10.128.20.12
      101.100 IN      PTR     host1.nyc3.example.com.  ; 10.128.100.101
      102.200 IN      PTR     host2.nyc3.example.com.  ; 10.128.200.102
      

      Agora que terminamos de editar nossos arquivos, podemos verificá-los à procura de erros.

      Verificando a sintaxe de configuração do BIND

      Execute o comando a seguir para verificar a sintaxe dos arquivos named.conf*:

      Se seus arquivos de configuração nomeados não tiverem erros de sintaxe, você retornará ao seu prompt do shell e não verá nenhuma mensagem de erro. Se houver problemas com seus arquivos de configuração, reveja a mensagem de erro e a seção “Como configurar o servidor DNS primário”, e então tente o named-checkconf novamente.

      O comando named-checkzone pode ser usado para verificar a correção dos arquivos da sua zona. Seu primeiro argumento especifica um nome de zona e o segundo especifica o arquivo da zona correspondente, sendo que ambos estão definidos em named.conf.local.

      Por exemplo, para verificar a configuração da zona de encaminhamento “nyc3.example.com”, execute o seguinte comando (mude os nomes para que correspondam à sua zona de encaminhamento e arquivo):

      • sudo named-checkzone nyc3.example.com db.nyc3.example.com

      E para verificar a configuração da zona reversa “128.10.in-addr.arpa”, execute o seguinte comando (mude os números para que correspondam à sua zona reversa e arquivo):

      • sudo named-checkzone 128.10.in-addr.arpa /etc/bind/zones/db.10.128

      Quando todos os arquivos de configuração e zona estiverem livres de erros, você está pronto para reiniciar o serviço BIND.

      Reiniciando o BIND

      Reinicie o BIND:

      • sudo systemctl restart bind9

      Se você tiver o firewall UFW configurado, libere o acesso para o BIND digitando:

      Seu servidor de DNS primário agora está configurado e pronto para responder às consultas do DNS. Vamos seguir em frente para a criação do servidor DNS secundário.

      Configurando o servidor DNS secundário

      Na maioria dos ambientes, é uma boa ideia configurar um servidor DNS secundário que responda aos pedidos caso o primário fique indisponível. Felizmente, o servidor DNS secundário é muito mais fácil de configurar.

      No ns2, edite o arquivo named.conf.options:

      • sudo nano /etc/bind/named.conf.options

      Ao topo do arquivo, adicione o ACL com os endereços IP privados de todos os seus servidores confiáveis:

      /etc/bind/named.conf.options — updated 1 of 2 (secondary)

      acl "trusted" {
              10.128.10.11;   # ns1
              10.128.20.12;   # ns2 - can be set to localhost
              10.128.100.101;  # host1
              10.128.200.102;  # host2
      };
      
      options {
      
              . . .
      

      Abaixo da diretriz directory, adicione as seguintes linhas:

      /etc/bind/named.conf.options — updated 2 of 2 (secondary)

              recursion yes;
              allow-recursion { trusted; };
              listen-on { 10.128.20.12; };      # ns2 private IP address
              allow-transfer { none; };          # disable zone transfers by default
      
              forwarders {
                      8.8.8.8;
                      8.8.4.4;
              };
      

      Salve e feche o arquivo named.conf.options. Este arquivo deve se parecer exatamente com o arquivo named.conf.options do ns1, exceto por precisar ser configurado para escutar o endereço IP privado do ns2.

      Agora, edite o arquivo named.conf.local:

      • sudo nano /etc/bind/named.conf.local

      Definas as zonas subordinadas que correspondam às zonas mestras no servidor DNS primário. Note que como o tipo é “subordinado”, o arquivo não contém um caminho e há uma diretriz masters que deve ser configurada para o endereço IP privado do servidor DNS primário. Se você definiu várias zonas inversas no servidor DNS primário, certifique-se de adicionar todas elas aqui:

      /etc/bind/named.conf.local — updated (secondary)

      zone "nyc3.example.com" {
          type slave;
          file "db.nyc3.example.com";
          masters { 10.128.10.11; };  # ns1 private IP
      };
      
      zone "128.10.in-addr.arpa" {
          type slave;
          file "db.10.128";
          masters { 10.128.10.11; };  # ns1 private IP
      };
      

      Agora salve e feche o arquivo named.conf.local.

      Execute o comando a seguir para verificar a validade dos seus arquivos de configuração:

      Assim que for aprovado, reinicie o BIND:

      • sudo systemctl restart bind9

      Permita conexões DNS ao servidor pela alteração das regras do firewall UFW:

      Agora você tem servidores DNS primários e secundários para resoluções de nome e endereço IP da rede privada. Agora, você precisa configurar os seus servidores de cliente para usar os seus servidores DNS privados.

      Configurando os clientes DNS

      Antes que todos os seus servidores ACL “confiáveis” possam consultar seus servidores DNS, você precisa configurar cada um deles para usar o ns1 e o ns2 como servidores de nomes. Este processo varia dependendo do SO, mas para a maioria das distribuições do Linux, envolve a adição dos seus servidores de nomes ao arquivo /etc/resolv.conf.

      Clientes Ubuntu 18.04

      No Ubuntu 18.04, a rede é configurada com o Netplan, uma abstração que permite que você escreva configurações padronizadas de rede e aplique-as para softwares backend de rede incompatíveis. Para configurar o DNS, precisamos escrever um arquivo de configuração do Netplan.

      Primeiramente, encontre o dispositivo associado à sua rede privada consultando a sub-rede privada com o comando ip address:

      • ip address show to 10.128.0.0/16

      Output

      3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000 inet 10.128.100.101/16 brd 10.128.255.255 scope global eth1 valid_lft forever preferred_lft forever

      Neste exemplo, a interface privada é a eth1.

      Em seguida, crie um novo arquivo em /etc/netplan chamado 00-private-nameservers.yaml:

      • sudo nano /etc/netplan/00-private-nameservers.yaml

      Cole lá dentro o seguinte conteúdo. Será necessário modificar a interface da rede privada, os endereços dos seus servidores DNS ns1 e ns2 e da zona do DNS:

      Nota: o Netplan usa o formato de serialização de dados YAML para seus arquivos de configuração. Como o YAML usa recuos e espaços em branco para definir sua estrutura de dados, certifique-se de que sua definição utilize recuos consistentes para evitar erros.

      /etc/netplan 00-private-nameservers.yaml

      network:
          version: 2
          ethernets:
              eth1:                                 # Private network interface
                  nameservers:
                      addresses:
                      - 10.128.10.11                # Private IP for ns1
                      - 10.132.20.12                # Private IP for ns2
                      search: [ nyc3.example.com ]  # DNS zone
      
      

      Salve e feche o arquivo quando você terminar.

      Em seguida, faça o Netplan tentar usar o novo arquivo de configuração utilizando o netplan try. Se houver problemas que causem uma perda de rede, o Netplan irá retroceder automaticamente as mudanças após um tempo limite:

      Output

      Warning: Stopping systemd-networkd.service, but it can still be activated by: systemd-networkd.socket Do you want to keep these settings? Press ENTER before the timeout to accept the new configuration Changes will revert in 120 seconds

      Se a contagem regressiva estiver atualizando corretamente ao fim, a nova configuração é, ao menos, funcional o suficiente para não interromper sua conexão via protocolo SSH. Pressione ENTER para aceitar a nova configuração.

      Agora, verifique o resolvedor DNS do sistema para determinar se sua configuração de DNS foi aplicada:

      • sudo systemd-resolve --status

      Role para baixo até ver a seção da sua interface de rede privada. Você deve ver os endereços IP privados dos seus servidores DNS listados primeiro, seguidos de alguns valores de retorno. Seu domínio deve estar no “DNS Domain”:

      Output

      . . . Link 3 (eth1) Current Scopes: DNS LLMNR setting: yes MulticastDNS setting: no DNSSEC setting: no DNSSEC supported: no DNS Servers: 10.128.10.11 10.128.20.12 67.207.67.2 67.207.67.3 DNS Domain: nyc3.example.com . . .

      Seu cliente agora deve estar configurado para usar seus servidores DNS internos.

      Clientes Ubuntu 16.04 e Debian

      Nos servidores Linux Ubuntu 16.04 e Debian, você pode editar o arquivo /etc/network/interfaces:

      • sudo nano /etc/network/interfaces

      Encontre lá dentro a linha dns-nameservers e anexe no início os seus próprios servidores de nomes na frente da lista que atualmente está lá. Abaixo dessa linha, adicione uma opção dns-search apontada para o domínio base da sua infraestrutura. No nosso caso, seria “nyc3.example.com”:

      /etc/network/interfaces

          . . .
      
          dns-nameservers 10.128.10.11 10.128.20.12 8.8.8.8
          dns-search nyc3.example.com
      
          . . .
      

      Salve e feche o arquivo quando você terminar.

      Agora, reinicie seus serviços de rede, aplicando as novas mudanças com os comandos a seguir. Certifique-se de substituir o eth0 pelo nome da sua interface de rede:

      • sudo ifdown --force eth0 && sudo ip addr flush dev eth0 && sudo ifup --force eth0

      Isso deve reiniciar sua rede sem interromper sua conexão atual. Se funcionou corretamente, você verá algo similar a isto:

      Output

      RTNETLINK answers: No such process Waiting for DAD... Done

      Verifique novamente se suas configurações foram aplicadas digitando:

      Você deve ver seus servidores de nomes no arquivo /etc/resolv.conf, além do seu domínio de busca:

      Output

      # Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8) # DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN nameserver 10.128.10.11 nameserver 10.128.20.12 nameserver 8.8.8.8 search nyc3.example.com

      Seu cliente agora está configurado para usar seus servidores DNS.

      Clientes CentOS

      No CentOS, RedHat, e Fedora Linux, edite o arquivo /etc/sysconfig/network-scripts/ifcfg-eth0. Pode ser que você precise substituir o eth0 pelo nome da sua interface de rede primária:

      • sudo nano /etc/sysconfig/network-scripts/ifcfg-eth0

      Procure as opções DNS1 e DNS2 e defina-as para os endereços IP privados dos seus servidores de nomes primários e secundários. Adicione um parâmetro DOMAIN junto com o domínio base da sua infraestrutura. Neste guia, seria “nyc3.example.com”:

      /etc/sysconfig/network-scripts/ifcfg-eth0

      . . .
      DNS1=10.128.10.11
      DNS2=10.128.20.12
      DOMAIN='nyc3.example.com'
      . . .
      

      Salve e feche o arquivo quando você terminar.

      Agora, reinicie o serviço de rede digitando:

      • sudo systemctl restart network

      O comando pode ficar suspenso por alguns segundos, mas deve retornar você para o prompt em breve.

      Verifique se suas alterações foram aplicadas digitando:

      Você deve ver seus servidores de nomes e domínio de busca na lista:

      /etc/resolv.conf

      nameserver 10.128.10.11
      nameserver 10.128.20.12
      search nyc3.example.com
      

      Seu cliente agora deve conseguir se conectar aos seus servidores DNS e utilizá-los.

      Testando os clientes

      Use o nslookup para testar se seus clientes podem consultar seus servidores de nomes. Você deve conseguir fazer isso em todos os clientes que configurou e que estão no ACL “confiáveis”.

      Para clientes CentOS, pode ser necessário instalar o utilitário com:

      • sudo yum install bind-utils

      Podemos começar executando uma pesquisa direta.

      Pesquisa direta

      Por exemplo, é possível executar uma pesquisa direta para recuperar o endereço IP do host1.nyc3.example.com executando o seguinte comando:

      A consulta do “host1” expande-se para o “host1.nyc3.example.com” pelo fato da opção search estar configurada para o seu sub-domínio privado e as consultas de DNS tentarão procurar naquele sub-domínio antes de procurar o host em outro lugar. O resultado do comando acima se pareceria com o seguinte:

      Output

      Server: 127.0.0.53 Address: 127.0.0.53#53 Non-authoritative answer: Name: host1.nyc3.example.com Address: 10.128.100.101

      Em seguida, podemos verificar as pesquisas inversas.

      Pesquisa inversa

      Para testar a pesquisa inversa, consulte o servidor DNS com o endereço IP privado do host1:

      Deverá ver um resultado que se parece com o seguinte:

      Output

      11.10.128.10.in-addr.arpa name = host1.nyc3.example.com. Authoritative answers can be found from:

      Se todos os nomes e endereços IP resolverem os valores corretos, seus arquivos de zona estão configurados corretamente. Se receber valores inesperados, certifique-se de rever os arquivos de zona no seu servidor DNS primário (por exemplo, db.nyc3.example.com e db.10.128).

      Parabéns! Seus servidores DNS internos agora estão configurados corretamente! Agora, vamos falar sobre a manutenção dos seus registros de zona.

      Conservando os registros DNS

      Agora que você tem um DNS interno funcionando, é preciso conservar seus registros DNS para que eles reflitam com precisão o ambiente do seu servidor.

      Como adicionar um Host ao DNS

      Sempre que adicionar um host ao seu ambiente (no mesmo datacenter), adicione-o ao DNS. Aqui está uma lista de passos que você precisa seguir:

      Servidor de nomes primário

      • Arquivo de zona de encaminhamento: adicione um registro “A” para o novo host, incrementando o valor de “Serial”
      • Arquivo de zona inversa: adicione um registro “PTR” para o novo host, incrementando o valor de “Serial”
      • Adicione o endereço IP privado do seu novo host ao ACL “confiáveis” (named.conf.options)

      Teste os seus arquivos de configuração:

      • sudo named-checkconf
      • sudo named-checkzone nyc3.example.com db.nyc3.example.com
      • sudo named-checkzone 128.10.in-addr.arpa /etc/bind/zones/db.10.128

      Então, recarregue o BIND:

      • sudo systemctl reload bind9

      Seu servidor primário deve estar agora configurado para o novo host.

      Servidor de nomes secundário

      • Adicione o endereço IP privado do seu novo host ao ACL “confiáveis” (named.conf.options)

      Verifique a sintaxe de configuração:

      Então, recarregue o BIND:

      • sudo systemctl reload bind9

      Seu servidor secundário agora aceitará conexões do novo host.

      Configure o novo host para usar o seu DNS

      • Configure o /etc/resolv.conf para que use seus servidores DNS
      • Teste utilizando o nslookup

      Removendo o host do DNS

      Se você remover um host do seu ambiente ou quiser simplesmente removê-lo do DNS, remova todas as coisas que foram adicionadas quando adicionou o servidor ao DNS (ou seja, o inverso dos passos acima).

      Conclusão

      Agora, é possível consultar as interfaces de rede privadas dos seus servidores por nome ao invés de endereço IP. Isso torna mais fácil a configuração dos serviços e aplicativos porque você já não precisa se lembrar dos endereços IP privados e os arquivos serão mais fáceis de ler e entender. Além disso, é possível agora alterar suas configurações para que apontem para um novo servidor em um único lugar, o seu servidor DNS, ao invés de precisar editar uma variedade de arquivos de configuração distribuídos, facilitando a manutenção.

      Assim que tiver seu DNS interno configurado, e os seus arquivos de configuração estiverem usando FQDNs privados para especificar conexões de rede, é fundamental que seus servidores DNS estejam devidamente conservados. Se ambos ficarem indisponíveis, seus serviços e aplicativos que dependem deles deixam de funcionar corretamente. É por isso que é recomendável configurar o seu DNS com pelo menos um servidor secundário, além de manter backups funcionais de todos eles.



      Source link

      Network Redundancy vs. Network Diversity: What’s the Difference, and Do I Need Both?


      Network redundancy is a duplicated infrastructure where additional or alternate instances of network devices and connections are installed to ensure an alternate path in case of a failure on the primary service. This is how you keep your business online and available should your main path of communication go down.

      While redundancy is great, many times services are in the same data center, share the same fiber bundle, patch panel or equipment. In fact, hardware failures and fiber cuts are the leading causes of network outages today.

      Being redundant may not protect you as well as planned.

      Network Redundancy vs. Network Diversity

      A duplicate or alternate instance of your network doesn’t always protect you from the leading causes of network outages, and it can’t always protect you from less frequent, but more catastrophic incidents, like floods or fires. Sometimes construction work, human error and even squirrels can interrupt your network service. To protect against these scenarios, network diversity is the answer.

      Network diversity takes redundancy one step further, duplicating your infrastructure on a geographically diverse path, in another data center or even in the cloud.

      Achieving Network Diversity Through Geographic Redundancy

      Diversity is key. Being geographically diverse protects you from weather events, construction and other single location incidents. If your redundant site is in a different state, or even in another country, your chances of two impacting events at the same time are significantly lessened. For even greater resiliency, you can move your redundancy or disaster recovery to the cloud via a Disaster Recovery as a Service solution.

      Achieving Network Diversity via Multihomed BGP

      You can achieve network diversity by being in geographically diverse data centers with the use of multihomed BGP. INAP offers the use of several BGP communities to ensure immediate failover of routing to your data center environment in case of a failure. Additionally, through INAP’s propriety technology, Performance IP®, your outbound traffic is automatically put on the best-performing route.

      Achieving Network Diversity Through Interconnection

      Another consideration is the connection from the data center to your central office. One can assume just because you have two different last mile providers for your redundancy that they use different paths. This usually is not the case; many fiber vaults and manholes are shared. This can result in both your primary and back up service being impaired when a backhoe unearths an 800-strand fiber. Ask the provider to share the circuit path to ensure your services are on diverse paths. INAP works to avoid these issues by offering high capacity metro network rings in key markets. Metro Connect interconnects multiple data centers with diverse paths, allowing you to avoid single points of failure for your egress traffic.

      Conclusion

      Redundancy is key to maintain the demanding uptime of today’s business. In most cases this does the job, however if your model is 100 percent uptime, it may be beneficial to start investing in a diverse infrastructure, as well.

      Explore INAP’s Global Network.

      LEARN MORE

      Erik Irwin
      • Director, Advanced Services, Global Network Services


      READ MORE



      Source link

      Network Route Optimization Made Easy with Performance IP (Demo)


      Latency. It’s the mortal enemy of virtual dragon slayers, the bane of digital advertisers and the adversary of online retailers. Every end user has experienced the negative effects of latency, and even though they don’t always understand the intricacies of routing traffic through a global network, their responses to that latency can have a lasting impact on the companies whose networks aren’t functioning at peak performance.

      Consider this: More than seven in 10 online gamers will play a lagging game for less than 10 minutes before quitting. As much as 78 percent of end users will go to a competitor’s site due to poor performance. And a one second delay can cause an 11 percent drop in page views, a seven percent drop in conversions and a 16 percent drop in customer satisfaction. For online merchants, even the big boys like Amazon, each one-second delay in page load time can lead to losses of $1.6 billion annually.

      Milliseconds matter. Anyone focused on network optimization knows this. But did you know that Border Gateway Protocol (BGP) only routes traffic through the best path around 18 percent of the time? The lowest number of hops does not equate to the fastest route. And yet seeking a path with the least hops is the default.

      What if there was a better way to find the lowest latency route to reach your end users?

      Find the Fastest Network Route with Performance IP®

      With INAP, finding the lowest latency route doesn’t require you to lift a finger. Customers in our data centers are connected to our robust global network and proprietary route optimization engine. Performance IP® enhances BGP by assessing the best-performing routes in real time.

      This technology makes a daily average of nearly 500 million optimization across our global network to automatically put your outbound traffic on the best-performing route. And with the meshed infrastructure of Tier 1 ISPs and our global network, you don’t have to choose between reliability, connectivity and speed. You can download the data sheet on Performance IP®here.

      “In online games, lag kills,” said Todd Harris, COO of Hi-Rez Studios, an INAP customer. “To deliver the best experience, we have to make sure that gamers are able to play on the best network while using the most efficient route. INAP delivers all of that.”

      Skeptical about what Performance IP® can do for you? Let’s run a destination test. Below, we’ll take you through the test step by step so you can get the most out of the demo when you try it for yourself.

      Breaking Down the Performance IP® Demo

      You can access the demo from the INAP homepage or the Performance IP® page. Get started by entering your website URL or any destination IP. We’ll use ca.gov for our test purposes.

      Performance IP Homepage

      Next, choose your source location. The locations in the drop-down menu represent INAP’s data centers and network points of presence where you can take advantage of the Performance IP® service. Each market has a different blend of Tier 1 ISPs. Performance IP® measures all carrier routes out of the data center and optimizes your traffic on the fastest route to your target address.

      Here, we’re running the test out of our Atlanta flagship data center, but you can test out all of our markets with the demo. We’ll run the route optimization test to our sample website, which is located in California. Once you have all your information entered, click “Run Destination Test.”

      Destination test
      Click to view full-size image.

      As you can see from the result of our test above, the shortest distance is not the lowest latency path. Each Greek letter on the chart represents an automonous system (AS). The Performance IP® service looked at seven carriers in this scenario and was able to optimize the route so that our traffic gets to its destination 21.50 percent faster—16.017 ms faster—than the slowest carrier.

      Destination Test Summary
      Click to view full-size image.

      In the traceroute chart above, we can study the latency for the each carrier more closely. Although in this scenario the best perfroming carrier passed though three automous systems while all of the other carriers passed through only two, it was still the fastest. Note that default BGP protocol would have sent us through any of the other carriers, including the slowest route through Carrier 3.

      Once you’ve had time to adequately study the outcome of the test, click “Continue” to see carrier performance over the last month. This chart measures the percentage of carrier prefixes originating from our Atlanta POP that had the best and worst performing routes for any given day of the month. While individual carrier performance can vary radically, if you’re a Performance IP® customer this won’t be a concern for you. Since the engine measures network paths millions of times a day, Performance IP® sends outbound traffic along the lowest latency path virtually 100 percent of the time.

      The final tab of the demo allows you to study our product line-up and open a chat to get a quote. Performance IP® is available for INAP colocation customers and is included with INAP Cloud products. If you’re not interested in these infrastructure solutions, you can still purchase Performance IP® from one of our data centers and connect it to your environment.

      Run the test for yourself, or chat with us now to get a quote.

      Explore the INAP Performance IP® Demo.

      LEARN MORE

      Laura Vietmeyer


      READ MORE



      Source link